首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11071篇
  免费   1043篇
  国内免费   547篇
电工技术   1102篇
综合类   734篇
化学工业   1997篇
金属工艺   442篇
机械仪表   545篇
建筑科学   538篇
矿业工程   386篇
能源动力   1006篇
轻工业   320篇
水利工程   114篇
石油天然气   584篇
武器工业   90篇
无线电   2069篇
一般工业技术   992篇
冶金工业   304篇
原子能技术   165篇
自动化技术   1273篇
  2024年   42篇
  2023年   209篇
  2022年   265篇
  2021年   354篇
  2020年   405篇
  2019年   345篇
  2018年   297篇
  2017年   369篇
  2016年   381篇
  2015年   402篇
  2014年   696篇
  2013年   649篇
  2012年   801篇
  2011年   881篇
  2010年   668篇
  2009年   631篇
  2008年   610篇
  2007年   674篇
  2006年   646篇
  2005年   515篇
  2004年   459篇
  2003年   432篇
  2002年   361篇
  2001年   323篇
  2000年   243篇
  1999年   187篇
  1998年   133篇
  1997年   115篇
  1996年   113篇
  1995年   86篇
  1994年   79篇
  1993年   52篇
  1992年   61篇
  1991年   29篇
  1990年   24篇
  1989年   19篇
  1988年   20篇
  1987年   11篇
  1986年   5篇
  1985年   16篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1979年   3篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 155 毫秒
181.
The conversion of methane to higher hydrocarbons on single crystal Ru catalysts has been investigated using combined elevated-pressure kinetic measurements/surface science studies. The reaction consists of activation of methane on Ru(0001) and Ru(11¯20) surfaces to produce carbonaceous intermediates at temperatures between 350 and 700 K and rehydrogenation of these species to ethane and propane at 370 K. It is found that under the reaction conditions employed, the maximum yield in ethane/propane production occurs at 500 K on both surfaces. Influence of the hydrogenation temperature on the production of ethane and propane is also examined. On Ru(0001), the yields of ethane and propane maximize at = 400 K, whereas no maximum yield was observed on Ru(11 0) in the 300–500 K temperature range. Under optimum reaction conditions, hydrocarbon products consist of 16% ethane and 2% propane. High-resolution electron energy-loss spectroscopy (HREELS) has been used to identify various forms of hydrocarbonaceous intermediates following methane decomposition. An effort is made to relate the hydrocarbon intermediates identified by HREELS to the gas phase products observed in the elevated pressure experiments.  相似文献   
182.
该文采用鲁棒区间法挖掘电-热综合能源系统协调运行的潜力,以缓解风电功率的不确定性对电力系统的运行稳定性的影响,并构建风力发电与氢储能系统相结合的风-氢混合系统,考虑氢储能系统的热平衡需求,以充分发挥氢储能系统的储能效率,平抑风电的波动性。首先,介绍了考虑氢储能系统接入的电-热综合能源系统结构,并构建其数学模型;然后,以区间形式考虑风电的不确定性,构建含风电的鲁棒区间优化调度模型,使系统在所有风电出力允许区间内,均满足允许约束条件;再次,建立一种含风-氢混合系统的电-热综合能源系统鲁棒区间优化调度模型,采用对偶理论将原模型转化为单层模型进行求解,最坏情况下的风电不平衡功率由可调机组根据时变参与因子进行调整;最后,以PJM-5节点电力系统与6节点热力系统和辽宁省北部太和综合能源系统为例对所提模型进行分析,验证了模型的有效性。  相似文献   
183.
Photocatalytic selective oxidation of 5-hydroxymethylfurfural (HMF) coupled H2 production offers a promising approach to producing valuable chemicals. Herein, an efficient in situ topological transformation tactic is developed for producing porous O-doped ZnIn2S4 nanosheets for HMF oxidation cooperative with H2 evolution. Aberration-corrected high-angle annular dark-field scanning TEM images show that the hierarchical porous O-ZIS-120 possesses abundant atomic scale edge steps and lattice defects, which is beneficial for electron accumulation and molecule adsorption. The optimal catalyst (O-ZIS-120) exhibits remarkable performance with 2,5-diformylfuran (DFF) yields of 1624 µmol h−1 g−1 and the selectivity of >97%, simultaneously with the H2 evolution rate of 1522 µmol h−1 g−1. Mechanistic investigations through theoretical calculations show that O in the O-ZIS-120 lattice can reduce the oxidation energy barrier of hydroxyl groups of HMF. In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) results reveal that DFF* (C4H2(CHO)2O*) intermediate has a weak interaction with O-ZIS-120 and desorb as the final product. This study elucidates the topotactic structural transitions of 2D materials simultaneously with electronic structure modulation for efficient photocatalytic DFF production.  相似文献   
184.
Here, a near-infrared (NIR)-absorbing small-molecule acceptor (SMA) Y-SeNF with strong intermolecular interaction and crystallinity is developed by combining selenophene-fused core with naphthalene-containing end-group, and then as a custom-tailor guest acceptor is incorporated into the binary PM6:L8-BO host system. Y-SeNF shows a 65 nm red-shifted absorption compared to L8-BO. Thanks to the strong crystallinity and intermolecular interaction of Y-SeNF, the morphology of PM6:L8-BO:Y-SeNF can be precisely regulated by introducing Y-SeNF, achieving improved charge-transporting and suppressed non-radiative energy loss. Consequently, ternary polymer solar cells (PSCs) offer an impressive device efficiency of 19.28% with both high photovoltage (0.873 V) and photocurrent (27.88 mA cm−2), which is one of the highest efficiencies in reported single-junction PSCs. Notably, ternary PSC has excellent stability under maximum-power-point tracking for even over 200 h, which is better than its parental binary devices. The study provides a novel strategy to construct NIR-absorbing SMA for efficient and stable PSCs toward practical applications.  相似文献   
185.
Developing new polymerized small molecular acceptor (PSMA) is pivotal for improving the performance of all-polymer solar cells. On the basis of this newly developed CH-series small molecule acceptors, two PSMAs are reported herein (namely PZC16 and PZC17, respectively). To reduce the molecular torsion caused by the traditional aromatic π-bridges, non-aromatic conjugated units (ethynyl for PZC16 and vinylene for PZC17) are adopted as the linkers and their effect on the photo-physical properties as well as the device performance are systematically investigated. Both polymer acceptors exhibit co-planar molecular conformation, along with broad absorption ranges and suitable energy levels. In comparison with the PM6:PZC16 film, the PM6:PZC17 film exhibits more uniform phase separation in morphology with a distinct bi-continuous network and better crystallinity. The PM6:PZC17-binary-based devices exhibit a satisfactory PCE of 16.33%, significantly higher than 9.22% of the PZC16-based devices. Impressively, PM6:PZC17-based large area device (ca. 1 cm2) achieves an excellent PCE of 15.14%, which is among the top performance for reported all-polymer solar cells (all-PSCs).  相似文献   
186.
With the development of organic solar cells (OSCs), the high-performance and stable batch variance are becoming a new challenge for designing polymer donors. To obtain high photovoltaic performance, adopting polymers with high molecular weight as donors is an ordinary strategy. However, the high molecular weight need to subtly control the reaction time and state, inevitably caused batch-to-batch variations. Herein, a strategy of steric effect is applied to benzodifuran (BDF)-based polymer by introducing different positions of Cl atom, producing two polymers PBDFCl-1 and PBDFCl-2. The more twisted side chains conformation not only achieve the control of moderate molecular weight for PBDFCl-2, but also easily form molecular stacking through adopting BDF unit and maintain sufficient polymeric crystallinity. Due to the optimized stacking mode and good blend miscibility, PBDFCl-2-based device exhibitsa more elegant power conversion efficiency (PCE) of 17.00% compared to PBDFCl-1-based device. This is the highest efficiency record for BDF-based binary OSCs. Meanwhile, the PCE device variation of the different molecular weights for PBDFCl-2 is little, indicating the reduction of the batch variation. Therefore, smartly using steric effect of Cl atom in strong crystalline BDF unit can form efficient molecular stacking regulations and realize the coordination of high-performance and stable batch variance.  相似文献   
187.
Antibacterial elements and non-contact heating abilities have been proven effective for antibacterial and antibiofilm activities, but it remains a challenge to integrate both within one material. Herein, assisted by the high-entropy effect, FeNiTiCrMnCux high-entropy alloy nanoparticles (HEA-NPs) with excellent photothermal heating properties for boosting antibacterial and antibiofilm performances are synthesized. Benefitting from the synergetic effect of copper ions released and thermal damage by the HEA-NPs, more reactive oxygen species (ROS) are generated, leading to the rupture of the cell membranes and the eradication of the biofilms. As a result, the antibiofilm efficiency (400 µg mL−1) of the mostly optimized FeNiTiCrMnCu1.0 HEA-NPs in the marine nutrient medium, which is the worst-case scenario for the antimicrobial material, can be improved from 81% to 97.4% under 30 min solar irradiation (1 sun). The present study demonstrates a new strategy for effectively treating marine microorganisms that cause biofouling and microbial corrosion using HEA-NPs with photothermal heating characteristics as an antibacterial auxiliary.  相似文献   
188.
With an increasing focus on climate action and energy security, an appropriate mix of renewable energy technologies is imperative. Despite having considerable global potential, wave energy has still not reached a state of maturity or economic competitiveness to have made an impact. Challenges include the high capital and operational costs associated with deployment in the harsh ocean environment, so it is imperative that the full energy harnessing capacity of wave energy devices, and arrays of devices in farms, is realised. To this end, control technology has an important role to play in maximising power capture, while ensuring that physical system constraints are respected, and control actions do not adversely affect device lifetime. Within the gamut of control technology, a variety of tools can be brought to bear on the wave energy control problem, including various control strategies (optimal, robust, nonlinear, etc.), data-based model identification, estimation, and forecasting. However, the wave energy problem displays a number of unique features which challenge the traditional application of these techniques, while also presenting a number of control ‘paradoxes’. This review articulates the important control-related characteristics of the wave energy control problem, provides a survey of currently applied control and control-related techniques, and gives some perspectives on the outstanding challenges and future possibilities. The emerging area of control co-design, which is especially relevant to the relatively immature area of wave energy system design, is also covered.  相似文献   
189.
This paper proposed the design of a broadband linear-to-circular reflecting polarizer for X-band applications. The polarizer is designed with three-arm dipole-shaped unit cells with a full ground plane to get wideband performance. The incident linear polarized wave is converted to a right-handed circularly polarized wave upon reflection from the polarizer. The footprint of the unit cell is 9 × 9 mm, which is printed on a FR-4 substrate. Fabricated prototype is measured for its performances like polarization conversion ratio (PCR), fractional bandwidth, and aperture efficiency. The PCR is about 97%, and the fractional bandwidth is 64% with the aperture efficiency of more than 80%. Polarizer performance is analyzed in transverse electric and transverse magnetic modes, and they are stable up to 40° of various incident angles. The polarizer exhibits the 3-dB axial ratio bandwidth from 8 to 12 GHz, which is suitable for satellite applications.  相似文献   
190.
近年来,多能互补利用成为能源开发的一种新趋势。海上风能和波浪能具有无污染、能量形式集中等诸多优点,一种基于两自由度直线旋转发电机的新型风浪结合发电系统应运而生。对海上风能和波浪能发电系统的研究现状进行综述,对比独立开发海上风能和波浪能的发电系统、传统风浪结合发电系统及新型海上风浪结合发电系统各自的优缺点;对作为新型海上风浪结合发电系统核心能量转换装置的两自由度直线旋转发电机的研究现状进行总结,并通过有限元方法初步验证了两自由度发电机用于新型海上风浪结合发电系统中的可行性,随后探讨该类发电机的研究热点及难点。最后,对海上风浪结合发电系统用两自由度发电机未来主要的研究方向进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号