首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2364篇
  免费   156篇
  国内免费   57篇
电工技术   91篇
综合类   148篇
化学工业   162篇
金属工艺   145篇
机械仪表   585篇
建筑科学   302篇
矿业工程   90篇
能源动力   102篇
轻工业   23篇
水利工程   11篇
石油天然气   37篇
武器工业   26篇
无线电   120篇
一般工业技术   592篇
冶金工业   34篇
原子能技术   13篇
自动化技术   96篇
  2024年   3篇
  2023年   6篇
  2022年   25篇
  2021年   40篇
  2020年   18篇
  2019年   28篇
  2018年   41篇
  2017年   55篇
  2016年   92篇
  2015年   183篇
  2014年   171篇
  2013年   159篇
  2012年   224篇
  2011年   229篇
  2010年   174篇
  2009年   182篇
  2008年   140篇
  2007年   182篇
  2006年   164篇
  2005年   117篇
  2004年   88篇
  2003年   81篇
  2002年   61篇
  2001年   36篇
  2000年   17篇
  1999年   24篇
  1998年   14篇
  1997年   8篇
  1996年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有2577条查询结果,搜索用时 15 毫秒
61.
62.
基于有限元法建立了典型的正交切削模型,结合切削热分配的解析法,研究了高速切削中切削热在切屑、工件和刀具部分的量化分配规律,并通过实验验证了模拟数据准确性,为高速切削热的相关研究提供了一种新的方法。  相似文献   
63.
This work aims at developing a hot sizing process on composite materials to correct the profiles of composite structures during manufacture. Hot sizing experiments were carried out at 150 °C with different sizing loads and hot sizing periods for L-shaped composite beams made of carbon fiber plain-weave fabric and epoxy resin. To predict the springback in hot sizing process, a corresponding finite element simulation method was developed using stress relaxation equations determined at the same temperature. Excellent agreements between the predicted and observed results were obtained. The effects of the component thickness and 45° ply percentage on the springback rate were investigated by simulation. Springback rate in hot sizing process on composite materials ranges from 60% to 95%. In conclusion hot sizing process is proved to be a valid method for compensation for the process-induced deformation (PID) of L-shaped composite beams.  相似文献   
64.
The method of symplectic series discretized by finite element is introduced for the stress analysis of structures having cracks at the interface of dissimilar materials. The crack is modeled by the conventional finite elements dividing into two regions: near and far fields. The unknowns in the far field are as usual. In the near field, a Hamiltonian system is established for applying the method of separable variables and the solutions are expanded in exact symplectic eigenfunctions. By performing a transformation from the large amount of finite element unknowns to a small set of coefficients of the symplectic expansion, the stress intensity factors, the displacements and stresses in the singular region are obtained simultaneously without any post-processing. The numerical results are obtained for various cracks lying at the bi-material interface, and are found to be in good agreement with the reference solutions for the interface crack problems. Some practical examples are also given.  相似文献   
65.
The response of prestress secondary reactions in the post-elastic range has been a topic of much controversy. Due to the brittleness of FRP (fiber reinforced polymer) composites, external FRP tendon members may have different moment redistribution characteristics compared to conventional concrete members. This paper presents a numerical investigation into the secondary reactions and moment redistribution in prestressed concrete continuous members with external CFRP tendons. The investigation parameters include the initial prestress level and the pattern of loading. The secondary reactions are computed using a newly developed method based on the linear transformation concept combined with a nonlinear finite element analysis. The results indicate that the secondary reactions increase quicker after concrete cracking and nonprestressed steel yielding. As a consequence, the secondary moment should be included in the design moment. The moment redistribution behavior for symmetrical loading is shown to be quite different from that for unsymmetrical loading. The study also shows that the effect of initial prestress on the moment redistribution is rather important.  相似文献   
66.
This paper presents a parametric investigation, based on non-linear finite element modeling, to identify the most effective configuration of carbon fiber-reinforced polymers (CFRP) for strengthening reinforced concrete (RC) dapped-end beams. Following a field application and laboratory tests, it focuses on effects of 24 externally bonded (EBR) and near surface mounted reinforcement (NSMR) configurations on yield strain in steel and the capacity and failure mode of dapped-end beams. The investigated parameters were the mechanical properties of the CFRP, the strengthening procedure and the inclination of the fibers with respect to the longitudinal axis. Two failure scenarios were considered: rupture and debonding of the FRP. The results indicate that high-strength NSM FRPs can considerably increase the capacity of dapped-end beams and the yielding strains in reinforcement can be substantially reduced by using high modulus fibers.  相似文献   
67.
The performance of fibre reinforced plastic (FRP) materials used for external strengthening depends strongly on the bond behaviour at the FRP-substrate interface. In this paper, the results of an analytical model and of two Finite Element (FE) models (bi-and three-dimensional) for simulating bond behaviour in FRP-strengthened masonry elements using zero-thickness interface elements are presented. The primary parameters of bilinear and nonlinear bond-slip laws were determined from experimental results of single shear bond tests that the authors conducted on masonry blocks of yellow tuff bonded with FRP carbon and glass fabrics. Several parametric analyses were conducted to estimate the effect of the primary bond law parameters on the global behaviour of the specimens and to determine the effective bonded length for the investigated masonry support.  相似文献   
68.
Environmental barrier coatings (EBCs) are proposed as an option to reduce the high temperature water vapour corrosion in gas turbines ceramic components made of Si3N4 or SiC/SiCf, which are projected to achieve further energy efficient gas turbines. These coating are commonly designed as multilayer systems firmly attached to the ceramic substrate with the aim of retarding or avoiding its degradation after exposure to environmental conditions close to those in gas turbines. Therefore, to fulfil this function crack formation/propagation in the coatings must be controlled. In present work, three types of environmental barrier coatings fabricated by air plasma spray and containing a Si layer attached to SiC substrate plus 2 to 5 layers of different mullite/Y2O3 stabilized–ZrO2 mixtures are examined. To determine the level of residual stresses in the as-sprayed coating/substrate systems a three dimensional finite element model is developed and also tested for same coatings but aged under, high temperature and rich water vapour atmosphere. The model calculates the zones of maximum tensile stresses in the coatings which agree with experimental observation identifying the type, number and location of cracks. This model could be extended to similar EBC systems, and more importantly, could be use as a powerful designing tool for these complex structures.  相似文献   
69.
This paper presents a linear discretized theoretical model on the basis of the ideal theoretical model to evaluate elastic constants of plain-weave composite by using the statistics of the feature parameters of yarn measured from Micro CT data. A finite element method is utilized to calculate the elastic constants of the composite using the modified and global mean feature parameters of yarn, respectively. Uniaxial tensile and in-plane shear experiments are then completed to measure in-plane elastic constants of the composite. Finally, comparisons among the predictions of two theoretical models, FEM and experimental results are conducted. The results show that the stochastic fluctuations of yarn feature parameters decrease the in-plane elastic moduli and increase the in-plane shear moduli and Poisson’s ratios of the plain-weave composite. The discretized theoretical model with taking account of real yarn stochastic features can predict more accurate elastic constants of the composite than deterministic models.  相似文献   
70.
An elastic-plastic interface model at finite deformations is utilized to investigate the irreversible delamination behavior of adhesive joints subjected to loading-delamination-unloading. The interface model accounts for the irreversible delamination in the fracture process zone induced by the localized plastic deformation and damage. The interfacial parameters in the cohesive model are obtained by fitting the available experimental data. Results suggest that the cohesive model can capture the irreversible delamination failure behavior observed in adhesively bonded joints during a loading-unloading cycle. The overall nonlinear response is dominated by the cohesive strength and initial damage displacement jump. Further, we also investigate the effect of the ductile mechanisms for the bulk layer on the competition between the plastic deformation of the bulk layer and the delamination of the interface. It is observed that the degradation of unloading stiffness is attributed to the inelastic behavior of the interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号