首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   15篇
  国内免费   8篇
电工技术   3篇
综合类   2篇
化学工业   83篇
金属工艺   13篇
机械仪表   2篇
建筑科学   2篇
矿业工程   1篇
能源动力   31篇
轻工业   36篇
石油天然气   3篇
无线电   5篇
一般工业技术   30篇
原子能技术   2篇
  2024年   2篇
  2023年   13篇
  2022年   17篇
  2021年   13篇
  2020年   6篇
  2019年   12篇
  2018年   8篇
  2017年   7篇
  2016年   1篇
  2015年   6篇
  2014年   9篇
  2013年   18篇
  2012年   17篇
  2011年   20篇
  2010年   7篇
  2009年   13篇
  2008年   5篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1989年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
211.
At present, the construction of high-efficiency photocatalytic degradation system of antibiotic pollutants has become a research hotspot. In this paper, Bi28O32(SO4)10/NiAl LDH photocatalyst with three-dimensional spherical morphology was successfully prepared by hydrothermal method followed by calcination, thus applying to the degradation of tetracycline. The characterization and photochemical analysis of the resulted material were used to determine the type of formed heterojunction. Bi28O32(SO4)10 and NiAl LDH build a close contact interface. The matching band gap structure makes S-scheme heterojunction formed between the two single component. Benefited from this structure, the Bi28O32(SO4)10/NiAl LDH composite with the mass ratio of 1:1 exhibited 95% efficiency in degradation of tetracycline after irradiation for 120 min, and it is stable, reusable and universal. The apparent rate constant of TC degradation by heterojunction catalyst is greatly increased, which is 5.35 and 4.91 times that of Bi28O32(SO4)10 and NiAl LDH. Overall, this paper provides a way of thinking for the design of new bismuth based photocatalytic materials, and thus providing a reference for the rational design of S-scheme heterojunction.  相似文献   
212.
Two-dimensional catalysts, which are sensitive to visible light and have a photothermal effect, can be used to catalyse the release of H2 from sodium borohydride (NaBH4) are being actively explored in energy saving systems. In this work, oxygen vacancy enriched two-dimensional CoFe-layered double hydroxide (CoFe-LDH) derivatives (named as CoFe-x °C, x = 200–500) have been explored for NaBH4 hydrolysis catalyzed by photo-thermal synergy without external heat source. The CoFe-300 °C presents its initial hexagonal lamellar structure and has the highest concentration of oxygen vacancy. These unique properties guarantee its excellent photo-thermal synergistic catalytic performance, achieving hydrogen production rate of 1877.5 mmol g−1 h−1, and maintains high efficiency after 5 cycles. This enhanced photo-thermal synergistic catalytic mechanism is the •OH (generated from h+ and H2O) attacks BH4 (absorbed on Ov sites) to produce H2, the heat from photothermal conversion accelerates the adsorption ability and attacking rate. This study opens a new strategy for the synergistic photo-thermal catalytic hydrolysis of NaBH4.  相似文献   
213.
Water splitting is an environmentally friendly method of hydrogen generation. However, it is severely limited by the slow anodic oxygen evolution reaction (OER). Iron-nickel layered double hydroxides (FeNi LDH) are promising electrocatalysts for OER, but their intrinsically low electrical conductivity and activity limit the practical applications. Herein, chromium-doped FeNi LDH nanoarrays in situ vertically grown on the surface of the Ti3C2Tx MXene (Cr-FeNi LDH/MXene) are successfully synthesized. Remarkably, the robust interaction and electrical coupling between Cr–FeNi LDH and MXene, as well as conspicuous charge transfer and the oxygen vacancies optimizing the adsorption free energy of intermediates, equip the nanocomposites with brilliant catalytic activity and stability toward OER. Thus, the optimized Cr–FeNi LDH/MXene shows a considerable boost in the OER, which affords low overpotential (232 mV at 10 mA cm?2) and excellent durability. This work offers a new path to designing highly efficient and earth-abundant catalysts for water splitting and beyond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号