首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   74篇
  国内免费   33篇
电工技术   42篇
综合类   24篇
化学工业   15篇
金属工艺   7篇
机械仪表   27篇
建筑科学   1篇
矿业工程   11篇
能源动力   10篇
轻工业   2篇
水利工程   10篇
石油天然气   22篇
武器工业   1篇
无线电   19篇
一般工业技术   16篇
冶金工业   4篇
原子能技术   1篇
自动化技术   115篇
  2024年   2篇
  2023年   5篇
  2022年   11篇
  2021年   15篇
  2020年   13篇
  2019年   16篇
  2018年   16篇
  2017年   20篇
  2016年   25篇
  2015年   22篇
  2014年   23篇
  2013年   38篇
  2012年   31篇
  2011年   18篇
  2010年   28篇
  2009年   13篇
  2008年   13篇
  2007年   9篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
排序方式: 共有327条查询结果,搜索用时 0 毫秒
21.
扩展卡尔曼滤波(Extended Kalman filter, EKF)的准确性依赖于观测的质量、观测对象的非线性程度及动态模型的准确性. 该方法通常假设其动态模型是不变的, 而且默认为非线性程度较弱, 这些在实际的车辆运动中都是不可靠的处理方式. 本文提出了一种利用最小二乘支持向量机(Least squares support vector machine, LSSVM)的技术增强扩展卡尔曼滤波的新算法. LSSVM改进后的EKF算法(LSSVM-EKF)一定程度上弥补了EKF处理强非线性问题的不足; 而且可以自适应地估计历史数据的动态建模偏差, 并使用估计偏差来补偿动态模型. 开发了一种引入Allan方差的K折交叉验证方法来确定LSSVM的训练参数; 将动态模型偏差通过有限数据集与LSSVM一起训练; 并引入无损变换将LSSVM与EKF进行了集成. 为了验证算法, 最后设计了车载试验, 并采用列车数据验证了文中所提的方法, 结果表明LSSVM-EKF可以较好地适应实际车辆运动环境, 可以提供一种可用的车辆定位方法.  相似文献   
22.
为了提高网络流量的预测准确性,针对训练样本选取问题,提出一种训练样本选择的最小二乘支持向量机网络流量预测模型(FCM-LSSVM)。采用模糊均值聚类算法对网络充量数据进行了聚类分析,消除其中的孤立样本点,构建最小二乘支持向量机的训练集,然后将训练集输入到最小二乘支持向量机进行了学习,并采用人工蜂群算法对模型参数进行了优化,最后建立建立网络流量预测模型,并采用仿真实验对模型性能测试。仿真结果表明,相对于其他网络流量预测模型,FCM-LSSVM不仅提高了网络流量的预测精度,而且建模速度得以提高,获得了更加理想的网强流量预测结果。  相似文献   
23.
SDN技术解决了IP网络布设困难、更新繁琐等突出问题, 近年来发展迅速. 本文针对SDN网络流量预测问题, 提出首先采用混沌理论对时间序列样本群进行相空间重构, 随后引入最小二乘支持向量机(LSSVM)构建SDN网络流量预测模型, 并结合改进的粒子群算法(PSO)对其关键参数进行优化. 实验结果证明, 该模型有效提高了...  相似文献   
24.
无人直升机被广泛应用于军事民用领域中执行高危任务,对其进行健康维护具有重要意义。尾桨轴承是无人直升机尾桨的关键零件,关系到无人直升机的平衡与航向控制。传统基于振动信号的监测诊断方法易受环境噪音干扰,诊断算法也易受噪声混叠影响。为解决以上问题,提出了一种基于超声信号的无人机尾桨轴承故障映射模型。首先,采集轴承不同故障状态下的超声信号。然后,利用自适应噪声完备集合经验模态分解(CEEMDAN)算法将信号分解,对分解后的信号分量计算各类熵值并融合构造特征向量。最后,将特征向量输送到基于粒子群优化算法的最小二乘支持向量机中建立特征向量与故障类型的映射模型,实现故障诊断。该方法在超声信号下对尾桨轴承早期故障诊断具有有效性和敏感性。  相似文献   
25.
陆荣秀  陈明明  杨辉  朱建勇 《计算机应用》2021,41(10):3075-3081
针对稀土萃取过程中组分含量难以实时监测以及现有组分含量检测方法耗时、耗内存的现状,设计了一种基于溶液图像时序特征的元素组分含量动态监测系统。首先使用图像采集装置获取萃取槽体溶液的时序图像,考虑萃取液颜色特性和单一颜色空间的不全面性,采用主成分分析(PCA)方法在HSI和YUV融合的颜色空间提取图像的时序特征,并结合生产指标构造基于鲸鱼优化算法(WOA)的最小二乘支持向量机(LSSVM)分类器来对工况状态进行判断。然后当工况处于非最佳状态时,在HSV颜色空间对图像提取颜色直方图和颜色矩特征,并开发以溶液图像间的混合特征差值的线性加权值为相似度度量的图像检索系统,从而获取组分含量值。最后进行镨/钕萃取槽体混合溶液测试,结果表明该系统能够实现元素组分含量的动态监测。  相似文献   
26.
徐辰华  吴冠宏 《测控技术》2023,42(7):110-118
针对铝电解过程中,槽电压的参数调节主要采用“试探法”、过于依赖技术员、耗时长等问题,提出了一种基于状态转移算法(State Transition Algorithm, STA)的槽电压优化方法。首先,采用灰色关联度分析方法确定槽电压模型的输入变量;然后,基于改进的最小二乘支持向量机(Least Square Support Vector Machine, LSSVM)建立槽电压软测量模型;最后,采用状态转移算法对槽电压优化控制模型进行实验,获得槽电压优化值和一组优化操作参数。结果表明,建立的槽电压软测量模型具有较高的预测精度,STA算法可寻到3.819 7 V的优化槽电压值,相较于优化前降低了115.8 mV,每吨铝直流电耗降低了363 kW·h,实现了槽电压的优化控制,达到了较好的节能降耗目的。  相似文献   
27.
针对列车高速运行时易出现蛇行失稳这一问题,提出了一种改进的集合经验模态分解(Modified Ensemble Empirical Mode Decomposition, MEEMD)香农熵-最小二乘法支持向量机(Least Squares Support Vector Machine, LSSVM)的高速列车蛇行失稳诊断方法。首先通过MEEMD对列车330Km/h~350Km/h时转向架构架的横向振动信号进行分解,得到固有模态函数(Intrinsic Mode Function, IMF),再通过Hilbert变换(HT)分析其时频聚集性,同时提取IMF分量的香农熵特征,最后用LSSVM进行训练和识别。结果表明,转向架蛇行失稳状态下的时频分布的聚集性较正常状态下好,并且MEEMD香农熵-LSSVM方法的识别率和计算耗时优于EEMD-SVM方法,识别率达到96.67%。  相似文献   
28.
目前腐蚀疲劳破坏预测方法精度不高.提出基于小波多分辨分析法(MRA),在再生核希尔伯特空间构建一种多尺度核函数的最小二乘支持向量机(multi-scale kernel LSSVM,MSK_LSSVM)预测算法.根据Mercer平移不变核定理,构造了多尺度复Gaussian小波核函数.由于多尺度核函数能够通过平移生成L2(R2)子空间的一组完备基,因此MSK_LSSVM可以任意逼近目标函数,更具灵活性.经仿真实验验证,与BP神经网络方法、标准支持向量机、灰色系统预测模型方法对比,机械结构中铆接件腐蚀变化的趋势通过MSK_LSSVM预测,准确率高、时间短.  相似文献   
29.
评估空中目标威胁程度是防空指挥控制系统的核心环节,评估的准确程度将对防空作战产生重大影响。针对传统评估方法实时性差、工作量大、评估精度不足、无法同时进行多目标评估等缺陷,提出了一种基于自适应杂交粒子群优化(ACPSO)算法和最小二乘支持向量机(LSSVM)的空中目标威胁评估方法。首先,根据空中目标态势信息构建威胁评估系统框架;然后,采用ACPSO算法对LSSVM中的正则化参数和核函数参数进行寻优,针对传统杂交机制的不足提出改进的交叉杂交方式,并使杂交概率自适应调整;最后,对比分析了各系统的训练和评估效果,并用优化后的系统实现多目标实时动态威胁评估。仿真结果表明,所提方法评估精度高,所需时间短,可同时进行多目标评估,为空中目标威胁评估提供了一种有效的解决方法。  相似文献   
30.
In this paper, we present a new system for the classification of electrocardiogram (ECG) beats by using a fast least square support vector machine (LSSVM). Five feature extraction methods are comparatively examined in the 15-dimensional feature space. The dimension of the each feature set is reduced by using dynamic programming based on divergence analysis. After the preprocessing of ECG data, six types of ECG beats obtained from the MIT-BIH database are classified with an accuracy of 95.2% by the proposed fast LSSVM algorithm together with discrete cosine transform. Experimental results show that not only the fast LSSVM is faster than the standard LSSVM algorithm, but also it gives better classification performance than the standard backpropagation multilayer perceptron network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号