首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   784篇
  免费   101篇
  国内免费   18篇
电工技术   385篇
综合类   23篇
化学工业   65篇
金属工艺   6篇
机械仪表   20篇
建筑科学   9篇
矿业工程   2篇
能源动力   40篇
轻工业   7篇
水利工程   13篇
石油天然气   2篇
无线电   180篇
一般工业技术   101篇
原子能技术   3篇
自动化技术   47篇
  2024年   5篇
  2023年   25篇
  2022年   10篇
  2021年   26篇
  2020年   29篇
  2019年   22篇
  2018年   24篇
  2017年   50篇
  2016年   44篇
  2015年   49篇
  2014年   63篇
  2013年   49篇
  2012年   50篇
  2011年   73篇
  2010年   47篇
  2009年   64篇
  2008年   42篇
  2007年   55篇
  2006年   37篇
  2005年   31篇
  2004年   31篇
  2003年   16篇
  2002年   13篇
  2001年   13篇
  2000年   9篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
排序方式: 共有903条查询结果,搜索用时 15 毫秒
41.
Lipid bilayers are widely employed as a model system to investigate interactions between cells and their environment. Supported lipid bilayers (SLB) with integrated transmembrane proteins are emerging as a preferred platform for sensing applications. Challenges lie in the generation of SLB on surfaces which allow transduction of signals for characterization of lipid bilayer and incorporated transmembrane proteins. For the first time, the formation of SLBs is shown on films of the conducting polymer, poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), using traditional methods for characterizing lipid bilayer quality and function (QCM‐D, FRAP) combined with impedance spectroscopy. Further, partial formation of SLBs on PEDOT:PSS based organic electrochemical transistors (OECTs) is successfully demonstrated, as well as the ability to integrate and sense the ion pore α‐hemolysin, confirming the sensitivity of the OECT as a transducer of biological membrane function. This work represents a highly promising first step toward the use of such OECTs for functional readout of transmembrane proteins in their native environment.  相似文献   
42.
43.
Niobium-carbide (Nb2C) MXene as a new 2D material has shown great potential for application in photovoltaics due to its excellent electrical conductivity, large surface area, and superior transmittance. In this work, a novel solution-processable poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-Nb2C hybrid hole transport layer (HTL) is developed to enhance the device performance of organic solar cells (OSCs). By optimizing the doping ratio of Nb2C MXene in PEDOT:PSS, the best power convention efficiency (PCE) of 19.33% can be achieved for OSCs based on the ternary active layer of PM6:BTP-eC9:L8-BO, which is so far the highest value among those of single junction OSCs using 2D materials. It is found that the addition of Nb2C MXene can facilitate the phase separation of the PEDOT and PSS segments, thus improving the conductivity and work function of PEDOT:PSS. The significantly enhanced device performance can be attributed to the higher hole mobility and charge extraction capability, as well as lower interface recombination probabilities generated by the hybrid HTL. Additionally, the versatility of the hybrid HTL to improve the performance of OSCs based on different nonfullerene acceptors is demonstrated. These results indicate the promising potential of Nb2C MXene in the development of high-performance OSCs.  相似文献   
44.
45.
ABSTRACT

This paper studied the fabrication of new hybrid-type poly(3,4- ethylene dioxythiophene) (PEDOT)/sulfonated graphene oxide electrode-based polymer actuator produced by film casting method. Sulfonated Poly(1,4-phenylene ether-ether sulfone) (SPS) ion-exchange polymer membrane-based ionic polymer composite actuators were fabricated using the different concentration of SGO. The characterization and actuation were demonstrated. By altering SGO concentration, four different SPS based membrane actuators were analyzed. The effects of SGO concentration on the morphology, proton conductivity, ion exchange capacity, and water uptake capability were studied. The maximum tip displacement and force by varying concentration of SGO were evaluated for the actuation performance.  相似文献   
46.
A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE''s. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%).  相似文献   
47.
The synthesis of nanoengineered materials with precise control over material composition, architecture and functionality is integral to advances in diverse fields, including biomedicine. Over the last 10 years, click chemistry has emerged as a prominent and versatile approach to engineer materials with specific properties. Herein, we highlight the application of click chemistry for the synthesis of nanoengineered materials, ranging from ultrathin films to delivery systems such as polymersomes, dendrimers and capsules. In addition, we discuss the use of click chemistry for functionalizing such materials, focusing on modifications aimed at biomedical applications.  相似文献   
48.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is an important organic electrode for solution-processed low-cost electronic devices. However, it requires doping and post-solvent treatment to improve its conductivity, and the chemicals used for such treatments may affect the device fabrication process. In this study, we developed a novel route for exploiting ultrafast lasers (femtosecond and picosecond laser) to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices. The conductivity of the PEDOT:PSS film was improved by three orders of magnitude (from 3.1 to 1024 S·cm–1), and high transparency of up to 88.5% (average visible transmittance, AVT) was achieved. Raman and depth-profiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced, thereby increasing the carrier concentration. The surface PSS content also decreased, which is beneficial to the carrier mobility, resulting in significantly enhanced electrical conductivity. Further, we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes, and a power conversion efficiency of 7.39% was achieved with 22.63% AVT. Thus, the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics.  相似文献   
49.
利用导电高分子聚(3,4-二氧乙基噻吩)/聚(对苯乙烯磺酸)(PEDOT/PSS)作保护剂,制备了银纳米颗粒,用UV-Vis和TEM对其进行了表征.结果表明,选择合适量的PEDOT/PSS保护剂可以得到大小分布较窄银纳米颗粒.  相似文献   
50.
In this investigation, we studied the oxidative steam reforming reaction of ethanol in a Pd-Ag/PSS membrane reactor for the production of high purity hydrogen. Palladium and silver were deposited on porous stainless steel (PSS) tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. An ethanol-water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2, 0.7 or 1.0) were fed concurrently into the membrane reactor packed with Zn-Cu commercial catalyst (MDC-3). The reaction temperatures were set at 593-723 K and the pressures at 3-10 atm. The hydrogen flux in the permeation side increased proportionately with increasing pressure; however, it reduced slightly when increasing oxygen input. This is probably due to the fast oxidation reaction that consumes hydrogen before the onset of the steam reforming reaction. The effect of oxygen plays a vital role on the ethanol oxidation steam reforming reaction, especially for a Pd-Ag membrane reactor in which a higher flux of hydrogen is required. The selectivity of CO2 increased with increasing flow rate of oxygen, while the selectivity of CO remained almost the same.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号