首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17961篇
  免费   1169篇
  国内免费   827篇
电工技术   378篇
综合类   556篇
化学工业   3892篇
金属工艺   1879篇
机械仪表   688篇
建筑科学   136篇
矿业工程   86篇
能源动力   945篇
轻工业   684篇
水利工程   11篇
石油天然气   99篇
武器工业   29篇
无线电   2969篇
一般工业技术   6877篇
冶金工业   269篇
原子能技术   155篇
自动化技术   304篇
  2024年   33篇
  2023年   197篇
  2022年   167篇
  2021年   324篇
  2020年   314篇
  2019年   337篇
  2018年   402篇
  2017年   493篇
  2016年   498篇
  2015年   551篇
  2014年   709篇
  2013年   1118篇
  2012年   1075篇
  2011年   1726篇
  2010年   1244篇
  2009年   1276篇
  2008年   1161篇
  2007年   1234篇
  2006年   1082篇
  2005年   781篇
  2004年   782篇
  2003年   685篇
  2002年   658篇
  2001年   520篇
  2000年   438篇
  1999年   361篇
  1998年   328篇
  1997年   285篇
  1996年   195篇
  1995年   177篇
  1994年   146篇
  1993年   111篇
  1992年   122篇
  1991年   107篇
  1990年   73篇
  1989年   46篇
  1988年   36篇
  1987年   29篇
  1986年   24篇
  1985年   25篇
  1984年   15篇
  1983年   9篇
  1982年   11篇
  1981年   5篇
  1980年   3篇
  1979年   6篇
  1978年   6篇
  1976年   7篇
  1975年   7篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
By mans of a chemical synthesis technique stoichiometric CdTe-nanocrystals thin films were prepared on glass substrates at 70 °C. First, Cd(OH)2 films were deposited on glass substrates, then these films were immersed in a growing solution prepared by dissolution of Te in hydroxymethane sulfinic acid to obtain CdTe. The structural analysis indicates that CdTe thin films have a zinc-blende structure. The average nanocrystal size was 19.4 nm and the thickness of the films 170 nm. The Raman characterization shows the presence of the longitudinal optical mode and their second order mode, which indicates a good crystalline quality. The optical transmittance was less than 5% in the visible region (400–700 nm). The compositional characterization indicates that CdTe films grew with Te excess.  相似文献   
12.
Cadmium selenide films were synthesized using simple electrodeposition method on indium tin oxide coated glass substrates. The synthesized films were post annealed at 200 °C, 300 °C and 400 °C. X-ray diffraction of the films showed the hexagonal structure with crystallite size <3 nm for as deposited films and 3–25 nm for annealed films. The surface morphology of films using field emission scanning electron microscopy showed granular surface. The high resolution transmission electron microscopy of a crystallite of the film revealed lattice fringes which measured lattice spacing of 3.13 Å corresponding to (002) plane, indicating the lattice contraction effect, due to small size of CdSe nanocrystallite. The calculation of optical band gap using UV–visible absorption spectrum showed strong red-shift with increase in crystallite size, indicating to the charge confinement in CdSe nanocrystallite.  相似文献   
13.
14.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
15.
《Ceramics International》2020,46(7):9218-9224
High-performance environment-friendly piezoelectric potassium sodium niobate (KNN)-based thin films have been emerged as promising lead-free candidates, while their substrate-dependent piezoelectricity faces the lack of high-quality information due to restraints in measurements. Although piezoresponse force microscopy (PFM) is a potential measuring tool, still its regular mode is not considered as a reliable characterization method for quantification. After combining machine-learning enabled analysis using PFM datasets, it is possible to measure piezoelectric properties quantitatively. Here we utilized advanced PFM technology empowered by machine learning to measure and compare the piezoelectricity of KNN based thin films on different substrates. The results provide a better understanding of the relationship between structures and piezoelectric properties of the thin films.  相似文献   
16.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
17.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
18.
Cadmium Sulfide and Ferrous doped Cadmium Sulfide thin films have been prepared on different substrates using an electrodeposition technique. Linear sweep voltammetric analysis has been carried out to determine deposition potential of the prepared films. X-ray diffraction analysis showed that the prepared films possess polycrystalline nature with hexagonal structure. Surface morphology and film composition have been analyzed using Scanning electron microscopy and Energy dispersive analysis by X-rays. Optical absorption analysis showed that the prepared films are found to exhibit Band gap value in the range between 2.3, 2.8 eV for Cadmium Sulfide and Ferrous doped Cadmium Sulfide.  相似文献   
19.
In this article, Fe‐Tetranitro phthalocyanine (Fe‐TNPc)/polyurethane (PU) blends were prepared by solution blending. The mechanical properties of the samples were studied by tensile tests. The results showed that the tensile strength and the elongation at break of the samples increased with increasing Fe‐TNPc content. The improved mechanical properties for the samples containing Fe‐TNPc was attributed to the increased microphase separation degree of PU, which was further investigated by dynamic mechanical analysis (DMA) and Fourier transform infrared analysis. The lower Tg of the soft segments and the higher Tg of the hard segments for the samples containing Fe‐TNPc indicated an increase of microphase separation degree of PU. The increased hydrogen bonded carbonyl groups in the samples with increasing Fe‐TNPc content also proved the conclusion. Quantitative evaluation of the interaction between Fe‐TNPc and PU was also investigated by analyzing the physical crosslinking density of the samples. The results indicated that the physical crosslinking density of the samples increased with increasing Fe‐TNPc content. The antibacterial properties of the samples were investigated. The results showed that the percentage bacterial inactivation toward S. aureus and E. coli of the samples were 98.9% and 90.9%, respectively, when Fe‐TNPc was added to 1%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41284.  相似文献   
20.
Porous polyimide (PI) films with low dielectric constants and excellent thermal properties have been a pressing demand for the next generation of high-performance, miniature, and ultrathin microelectronic devices. A series of novel porous PI films containing fluorenyl-adamantane groups were prepared successfully via thermolysis of poly(ethylene glycol) (PEG) added in the PI matrix. The cross-sectional morphologies of porous PI films showed closed pores with diameters ranging from 135 to 158 nm, which were uniform and regular in shape without interconnectivity. These porous PI films exhibited excellent thermal properties with a glass-transition temperature at 376 °C whereas the 5% weight loss temperature in air excess of 405 °C due to enhanced rigidity afforded by fluorenyl-adamantane groups. Accompanied by thermolysis content of PEG increasing from 0 to 20 wt %, the density of porous PI films decreased, and the corresponding porosity grew significantly from 0 to 11.48%. Depending on porosity, the dielectric constant and dielectric loss of porous PI films significantly declined from 2.89 to 2.37 and from 0.050 to 0.021, respectively. These excellent properties benefit the as-prepared porous PI films for application as interlayer dielectrics, integrated circuit chips, or multichip modules in microelectronic fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47313.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号