首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107661篇
  免费   11014篇
  国内免费   5780篇
电工技术   21919篇
技术理论   14篇
综合类   8868篇
化学工业   10728篇
金属工艺   3745篇
机械仪表   4990篇
建筑科学   15399篇
矿业工程   3409篇
能源动力   14146篇
轻工业   3163篇
水利工程   2181篇
石油天然气   3326篇
武器工业   960篇
无线电   7237篇
一般工业技术   9357篇
冶金工业   5618篇
原子能技术   1446篇
自动化技术   7949篇
  2024年   521篇
  2023年   1962篇
  2022年   3253篇
  2021年   3703篇
  2020年   4025篇
  2019年   3442篇
  2018年   3005篇
  2017年   3634篇
  2016年   4067篇
  2015年   4074篇
  2014年   7787篇
  2013年   6905篇
  2012年   7951篇
  2011年   8503篇
  2010年   6449篇
  2009年   6846篇
  2008年   6295篇
  2007年   7327篇
  2006年   5921篇
  2005年   4695篇
  2004年   3988篇
  2003年   3669篇
  2002年   2995篇
  2001年   2543篇
  2000年   2137篇
  1999年   1696篇
  1998年   1292篇
  1997年   1009篇
  1996年   921篇
  1995年   704篇
  1994年   603篇
  1993年   430篇
  1992年   364篇
  1991年   288篇
  1990年   252篇
  1989年   215篇
  1988年   172篇
  1987年   124篇
  1986年   84篇
  1985年   108篇
  1984年   114篇
  1983年   94篇
  1982年   89篇
  1981年   38篇
  1980年   45篇
  1979年   28篇
  1978年   17篇
  1977年   12篇
  1959年   6篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
11.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
12.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
13.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
14.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
15.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   
16.
The charge sources, as well as the charging mechanism of the contact electrification (CE) of polymers, are still debatable. Since CE is accompanied by destruction, it is considered that “hard contacting” via ball milling can induce covalent bond scission and produce naked-activated-charge sources. Regarding “soft contacting” via nano-scale sliding, which does not induce covalent bond scission, a frontier-electron, “f-electron, of the naked-activated-charge source is crucial to electron transfer among the naked-activated-charge sources. Here, we configure naked-activated-charge-source models, naked-activated-mechano-anion, and naked-activated-mechano-cation, which are produced by mechanical energy induced heterogeneous covalent bond scission, as well as naked-activated-mechano-radicals that are produced by homogeneous covalent bond scission. Regarding “soft contacting” among naked-activated-charge sources in a vacuum, f-electron can be transferred from a donor to an acceptor if the energy level of the donor is higher than that of the acceptor. The net amount of the normalized transferred-f-electrons is obtained by adopting settings in which the average energy level of the naked-activated-charge sources (as the donors) is higher than that of the sources employed as acceptors. Thus, the surfaces comprising the donors and acceptors will exhibit positive and negative net surface charges, respectively. We conclude that net surface charges depend on the average energy level of naked-activated-charge sources. Further, we observe that the alignment of polyethylene (PE)-polyvinyl chloride (PVC)-polytetrafluoroethylene (PTFE) to the average energy level is identical to that of the triboelectric series.  相似文献   
17.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
18.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   
19.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
20.
In this paper, we present an aero‐structural model of a tethered swept wing for airborne wind energy generation. The carbon composite wing has neither fuselage nor actuated aerodynamic control surfaces and is controlled entirely from the ground using three separate tethers. The computational model is efficient enough to be used for weight optimisation at the initial design stage. The main load‐bearing wing component is a nontypical “D”‐shaped wing‐box, which is represented as a slender carbon composite shell and further idealised as a stack of two‐dimensional cross section models arranged along an anisotropic one‐dimensional beam model. This reduced 2+1D finite element model is then combined with a nonlinear vortex step method that determines the aerodynamic load. A bridle model is utilised to calculate the individual forces as a function of the aerodynamic load in the bridle lines that connect the main tether to the wing. The entire computational model is used to explore the influence of the bride on the D‐box structure. Considering a reference D‐box design along with a reference aerodynamic load case, the structural response is analysed for typical bridle configurations. Subsequently, an optimisation of the internal geometry and laminate fibre orientations is carried out using the structural computation models, for a fixed aerodynamic and bridle configuration. Aiming at a minimal weight of the wing structure, we find that for the typical load case of the system, an overall weight savings of approximately 20% can be achieved compared with the initial reference design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号