首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13306篇
  免费   2417篇
  国内免费   2009篇
电工技术   701篇
技术理论   3篇
综合类   1325篇
化学工业   585篇
金属工艺   146篇
机械仪表   505篇
建筑科学   958篇
矿业工程   680篇
能源动力   164篇
轻工业   598篇
水利工程   331篇
石油天然气   534篇
武器工业   83篇
无线电   1558篇
一般工业技术   813篇
冶金工业   373篇
原子能技术   64篇
自动化技术   8311篇
  2024年   120篇
  2023年   406篇
  2022年   710篇
  2021年   853篇
  2020年   766篇
  2019年   599篇
  2018年   595篇
  2017年   624篇
  2016年   602篇
  2015年   684篇
  2014年   950篇
  2013年   867篇
  2012年   1017篇
  2011年   1119篇
  2010年   856篇
  2009年   849篇
  2008年   842篇
  2007年   972篇
  2006年   761篇
  2005年   613篇
  2004年   521篇
  2003年   437篇
  2002年   401篇
  2001年   272篇
  2000年   232篇
  1999年   212篇
  1998年   148篇
  1997年   105篇
  1996年   109篇
  1995年   87篇
  1994年   77篇
  1993年   48篇
  1992年   30篇
  1991年   25篇
  1990年   27篇
  1989年   20篇
  1988年   14篇
  1987年   13篇
  1986年   17篇
  1985年   17篇
  1984年   16篇
  1983年   21篇
  1982年   10篇
  1981年   13篇
  1980年   10篇
  1979年   7篇
  1978年   9篇
  1977年   6篇
  1974年   3篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
在室内环境下的机器人视觉导航任务中,可行驶区域检测是不可或缺的一部分,这是保证自动驾驶任务实现的基础.目前较多的解决方法是对数据集中出现过的障碍物进行识别来检测可行驶区域,缺乏灵活性,因此本文提出了一种针对地铁站等室内平坦地面的可行驶区域检测方法,提高实用性.本文采用经典的MobileNetV3网络对采集到的前方图像进行分类,判断是否为地面区域.由于室内地面的地标、箭头等贴纸的影响,因此需要对非地面区域进一步判断,与常规的立体障碍物进行区分.本文利用连续帧之间的特征点匹配获得相机移动距离,并利用直线拟合计算斜率的方法达到区分立体障碍物与平面地标的目的.实验表明,本文提出的方法能较好地检测机器人前方可行驶区域,具有较高的实用价值.  相似文献   
22.
While the internet has a lot of positive impact on society, there are negative components. Accessible to everyone through online platforms, pornography is, inducing psychological and health related issues among people of all ages. While a difficult task, detecting pornography can be the important step in determining the porn and adult content in a video. In this paper, an architecture is proposed which yielded high scores for both training and testing. This dataset was produced from 190 videos, yielding more than 19 h of videos. The main sources for the content were from YouTube, movies, torrent, and websites that hosts both pornographic and non-pornographic contents. The videos were from different ethnicities and skin color which ensures the models can detect any kind of video. A VGG16, Inception V3 and Resnet 50 models were initially trained to detect these pornographic images but failed to achieve a high testing accuracy with accuracies of 0.49, 0.49 and 0.78 respectively. Finally, utilizing transfer learning, a convolutional neural network was designed and yielded an accuracy of 0.98.  相似文献   
23.
In this paper, an Automated Brain Image Analysis (ABIA) system that classifies the Magnetic Resonance Imaging (MRI) of human brain is presented. The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis. The Non-Subsampled Shearlet Transform (NSST) that captures more visual information than conventional wavelet transforms is employed for feature extraction. As the feature space of NSST is very high, a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies. A combination of features that includes Gray Level Co-occurrence Matrix (GLCM) based features, Histograms of Positive Shearlet Coefficients (HPSC), and Histograms of Negative Shearlet Coefficients (HNSC) are estimated. The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers; k-Nearest Neighbor (kNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers. The output of individual trained classifiers for a testing input is hybridized to take a final decision. The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data (REMBRANDT) database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.  相似文献   
24.
This paper presents new a feature transformation technique applied to improve the screening accuracy for the automatic detection of pathological voices. The statistical transformation is based on Hidden Markov Models, obtaining a transformation and classification stage simultaneously and adjusting the parameters of the model with a criterion that minimizes the classification error. The original feature vectors are built up using classic short-term noise parameters and mel-frequency cepstral coefficients. With respect to conventional approaches found in the literature of automatic detection of pathological voices, the proposed feature space transformation technique demonstrates a significant improvement of the performance with no addition of new features to the original input space. In view of the results, it is expected that this technique could provide good results in other areas such as speaker verification and/or identification.  相似文献   
25.
The defect of process equipments is a major factor that impairs the yields in the mass production of semiconductor wafer fabrication and it is a main supervision means to use high-resolution defect inspection tools to detect and monitor the defect damage. Due to the high investment costs of these inspection tools and the resulting decrease in the throughput, how to improve the sampling rate is an important issue for the associated inspection strategy. This paper proposes a new concept and implementation of virtual inspection (VI) to enhance the detection and monitoring of defect in semiconductor production process. The underlying theory of the VI concept is that the state variables identifications (SVIDs) of process equipments can reflect the process quality effectively and loyally. The approach of VI is to combine the application of the fault detection and classification (FDC), and the defect library and the re-engineering of inspection procedure to reach the full-scope of strategic objective. VI enables the defect monitoring to enter a new era by promoting the monitoring level of defect inspection from the previous lot-sampling basis to the wafer-sampling level, and hence upgrades the sampling strategy from random-sampling to full and right-sampling. In this study, various typical defect cases are utilized to illustrate how to create VI models and verify the reliability of the proposed approach. Furthermore, a feasible architecture of the VI implementation for mass production in semiconductor factory is presented in the paper.  相似文献   
26.
In this paper we introduce a goal programming formulation for the multi-group classification problem. Although a great number of mathematical programming models for two-group classification problems have been proposed in the literature, there are few mathematical programming models for multi-group classification problems. Newly proposed multi-group mathematical programming model is compared with other conventional multi-group methods by using different real data sets taken from the literature and simulation data. A comparative analysis on the real data sets and simulation data shows that our goal programming formulation may suggest efficient alternative to traditional statistical methods and mathematical programming formulations for the multi-group classification problem.  相似文献   
27.
In this paper we offer a variational Bayes approximation to the multinomial probit model for basis expansion and kernel combination. Our model is well-founded within a hierarchical Bayesian framework and is able to instructively combine available sources of information for multinomial classification. The proposed framework enables informative integration of possibly heterogeneous sources in a multitude of ways, from the simple summation of feature expansions to weighted product of kernels, and it is shown to match and in certain cases outperform the well-known ensemble learning approaches of combining individual classifiers. At the same time the approximation reduces considerably the CPU time and resources required with respect to both the ensemble learning methods and the full Markov chain Monte Carlo, Metropolis-Hastings within Gibbs solution of our model. We present our proposed framework together with extensive experimental studies on synthetic and benchmark datasets and also for the first time report a comparison between summation and product of individual kernels as possible different methods for constructing the composite kernel matrix.  相似文献   
28.
In this paper we formulate a least squares version of the recently proposed twin support vector machine (TSVM) for binary classification. This formulation leads to extremely simple and fast algorithm for generating binary classifiers based on two non-parallel hyperplanes. Here we attempt to solve two modified primal problems of TSVM, instead of two dual problems usually solved. We show that the solution of the two modified primal problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in TSVM. Classification using nonlinear kernel also leads to systems of linear equations. Our experiments on publicly available datasets indicate that the proposed least squares TSVM has comparable classification accuracy to that of TSVM but with considerably lesser computational time. Since linear least squares TSVM can easily handle large datasets, we further went on to investigate its efficiency for text categorization applications. Computational results demonstrate the effectiveness of the proposed method over linear proximal SVM on all the text corpuses considered.  相似文献   
29.
基于流形学习和SVM的Web文档分类算法   总被引:7,自引:4,他引:3       下载免费PDF全文
王自强  钱旭 《计算机工程》2009,35(15):38-40
为解决Web文档分类问题,提出一种基于流形学习和SVM的Web文档分类算法。该算法利用流形学习算法LPP对训练集中的高维Web文档空间进行非线性降维,从中找出隐藏在高维观测数据中有意义的低维结构,在降维后的低维特征空间中利用乘性更新规则的优化SVM进行分类预测。实验结果表明该算法以较少的运行时间获得更高的分类准确率。  相似文献   
30.
基于SVM-2DPCA的X光胸片异常筛查   总被引:1,自引:1,他引:0       下载免费PDF全文
王彦明  钱建忠  潘晨 《计算机工程》2009,35(18):170-172
基于统计学习理论的支持向量机分类算法,提出一种X光胸片异常筛查系统,能够自动判别胸片的正常和异常。为了提高SVM算法的效率,利用小波变换等预处理手段去除对判读无用的图像冗余信息,采用二维主成分分析进一步降低图像特征维数。实验结果表明,SVM用于医学X光片异常筛查可行且有效、识别率高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号