全文获取类型
收费全文 | 18673篇 |
免费 | 2071篇 |
国内免费 | 1002篇 |
专业分类
电工技术 | 1747篇 |
技术理论 | 3篇 |
综合类 | 2019篇 |
化学工业 | 1018篇 |
金属工艺 | 302篇 |
机械仪表 | 600篇 |
建筑科学 | 2769篇 |
矿业工程 | 766篇 |
能源动力 | 1100篇 |
轻工业 | 1622篇 |
水利工程 | 1604篇 |
石油天然气 | 716篇 |
武器工业 | 342篇 |
无线电 | 1028篇 |
一般工业技术 | 1559篇 |
冶金工业 | 1195篇 |
原子能技术 | 347篇 |
自动化技术 | 3009篇 |
出版年
2024年 | 127篇 |
2023年 | 353篇 |
2022年 | 623篇 |
2021年 | 773篇 |
2020年 | 772篇 |
2019年 | 650篇 |
2018年 | 678篇 |
2017年 | 671篇 |
2016年 | 960篇 |
2015年 | 833篇 |
2014年 | 1351篇 |
2013年 | 1636篇 |
2012年 | 1356篇 |
2011年 | 1573篇 |
2010年 | 1206篇 |
2009年 | 1151篇 |
2008年 | 1045篇 |
2007年 | 1141篇 |
2006年 | 1025篇 |
2005年 | 816篇 |
2004年 | 610篇 |
2003年 | 514篇 |
2002年 | 408篇 |
2001年 | 292篇 |
2000年 | 212篇 |
1999年 | 162篇 |
1998年 | 147篇 |
1997年 | 95篇 |
1996年 | 97篇 |
1995年 | 66篇 |
1994年 | 67篇 |
1993年 | 46篇 |
1992年 | 27篇 |
1991年 | 27篇 |
1990年 | 26篇 |
1989年 | 27篇 |
1988年 | 29篇 |
1987年 | 20篇 |
1986年 | 18篇 |
1985年 | 10篇 |
1984年 | 14篇 |
1983年 | 9篇 |
1982年 | 9篇 |
1981年 | 6篇 |
1980年 | 9篇 |
1979年 | 4篇 |
1965年 | 14篇 |
1959年 | 5篇 |
1957年 | 3篇 |
1955年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
In full reference image quality assessment (IQA), the images without distortion are usually employed as reference, while the structures in both reference images and distorted images are ignored and all pixels are equally treated. In addition, the role of human visual system (HVS) is not taken account into subjective IQA metric. In this paper, a weighted full-reference image quality metric is proposed, where a weight imposed on each pixel indicates its importance in IQA. Furthermore, the weights can be estimated via visual saliency computation, which can approximate the subjective IQA via exploiting the HVS. In the experiments, the proposed metric is compared with several objective IQA metrics on LIVE release 2 and TID 2008 database. The results demonstrate that SROCC and PLCC of the proposed metric are 0.9647 and 0.9721, respectively,which are higher than other methods and it only takes 427.5 s, which is lower than that of most other methods. 相似文献
82.
In this paper, we put forward an effective and efficient no reference image blurriness assessment metric on the basis of local binary pattern (LBP) features. In this proposal, we reveal that part of the LBP histogram bins present monotonously with the degree of blurriness. The proposed method contains the following steps. Firstly, the LBP maps of an input image are extracted with multiple radiuses. And then, the frequency of pattern histogram is analyzed before part of bins are chosen as the features. In addition, we also take the entropy of these bins as another feature. Finally, we learn the extracted features to predict the image blurriness score. Validation of the proposed method is conducted on the blurred images of LIVE-II, CSIQ, TID2008, TID2013, LIVE3D IQA Phase I and LIVE3D IQA Phase II. Experimental results demonstrate that compared with the state-of-the-art image quality assessment (IQA) methods, the proposed algorithm has notable advantage in correlation with subjective perception and computational complexity. 相似文献
83.
提出了一种基于图像先验和图像结构特征的盲图像复原算法,在模糊核未知的情况下,采用一系列离散化的模糊核参数对模糊图像进行非盲去卷积,得到一系列对应的复原图像。同时提出一种复原图像判决准则,对这一系列复原图像进行质量判决,从中得到最优的复原图像。最后在实验部分,通过对图像的测试表明,提出的盲图像复原算法能较准确的得到最优复原图像,复原效果在主观和客观标准上均有良好表现。 相似文献
84.
85.
针对信息安全风险评估过程中专家评价意见的多样性以及不确定信息难以量化处理的问题,提出了一种基于改进的DS证据理论与贝叶斯网络(BN)结合的风险评估方法.首先,在充分研究信息安全风险评估流程和要素的基础上,建立了风险评估模型,确定风险影响因素;其次,根据评估模型并结合专家知识构建相应的贝叶斯网络模型,确定贝叶斯网络模型中的条件概率表;再次,利用基于权值分配和矩阵分析的改进DS证据理论融合多位专家对风险影响因素的评价意见;最后,根据贝叶斯网络模型的推理算法,计算被测信息系统处于不同风险等级的概率值,并对结果进行有效性分析.分析表明,将改进后的DS证据理论与贝叶斯网络应用到风险评估过程中,在一定程度上能够提高评估结果的可信度和直观性. 相似文献
86.
The performance of computer vision algorithms can severely degrade in the presence of a variety of distortions. While image enhancement algorithms have evolved to optimize image quality as measured according to human visual perception, their relevance in maximizing the success of computer vision algorithms operating on the enhanced image has been much less investigated. We consider the problem of image enhancement to combat Gaussian noise and low resolution with respect to the specific application of image retrieval from a dataset. We define the notion of image quality as determined by the success of image retrieval and design a deep convolutional neural network (CNN) to predict this quality. This network is then cascaded with a deep CNN designed for image denoising or super resolution, allowing for optimization of the enhancement CNN to maximize retrieval performance. This framework allows us to couple enhancement to the retrieval problem. We also consider the problem of adapting image features for robust retrieval performance in the presence of distortions. We show through experiments on distorted images of the Oxford and Paris buildings datasets that our algorithms yield improved mean average precision when compared to using enhancement methods that are oblivious to the task of image retrieval. 1 相似文献
87.
Evaluating massive-scale aerial/satellite images quality is useful in computer vision and intelligent applications. Traditional local features-based algorithms have achieved impressive performance. However, spatial cues, i.e., geometric property and topological structure, have not been exploited effectively and explicitly. Thus, in this paper, we propose a novel method for image quality assessment towards aerial/satellite images, where discriminative spatial cues are well encoded. More specifically, in order to mine inherent spatial structure of aerial images, each image is segmented into several basic components such as buildings, airport and playground. Afterwards, a weighted region adjacency graph (RAG) is built based on the basic components to represent the spatial feature of each aerial image. We integrate the spatial feature with other transform domain features, and train a support vector regression model to achieve image quality assessment. Experiments demonstrate that our method shows competitive or even better performance compared with several state-of-the-art algorithms. 相似文献
88.
Image quality assessment (IQA) is a useful technique in computer vision and machine intelligence. It is widely applied in image retrieval, image clustering and image recognition. IQA algorithms generally rely on human visual system (HVS), which can reflect how human perceive salient regions in the image. In this paper, we leverage both low-level features and high-level semantic features to select salient regions, which will be concatenated to form GSPs by the designed saliency-constraint algorithm to mimic human visual system. We design an enhanced IQA index based on the GSPs to calculate the simialrity between reference image and test image to achieve image quality assessment. Experiments demonstrate that our IQA method can achieve satisfactory performance. 相似文献
89.
90.