首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34648篇
  免费   3244篇
  国内免费   1903篇
电工技术   1997篇
综合类   1301篇
化学工业   12737篇
金属工艺   2258篇
机械仪表   442篇
建筑科学   373篇
矿业工程   784篇
能源动力   3746篇
轻工业   895篇
水利工程   43篇
石油天然气   779篇
武器工业   66篇
无线电   3972篇
一般工业技术   7163篇
冶金工业   2041篇
原子能技术   517篇
自动化技术   681篇
  2024年   146篇
  2023年   842篇
  2022年   1163篇
  2021年   1493篇
  2020年   1382篇
  2019年   1408篇
  2018年   1313篇
  2017年   1389篇
  2016年   1230篇
  2015年   1205篇
  2014年   1707篇
  2013年   1976篇
  2012年   2218篇
  2011年   2768篇
  2010年   2065篇
  2009年   2058篇
  2008年   1828篇
  2007年   2047篇
  2006年   1778篇
  2005年   1441篇
  2004年   1286篇
  2003年   1169篇
  2002年   943篇
  2001年   788篇
  2000年   771篇
  1999年   557篇
  1998年   481篇
  1997年   365篇
  1996年   344篇
  1995年   253篇
  1994年   229篇
  1993年   182篇
  1992年   196篇
  1991年   166篇
  1990年   133篇
  1989年   123篇
  1988年   68篇
  1987年   39篇
  1986年   26篇
  1985年   48篇
  1984年   36篇
  1983年   26篇
  1982年   36篇
  1981年   20篇
  1980年   13篇
  1979年   9篇
  1977年   4篇
  1976年   4篇
  1959年   5篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
BaCu2-xCoxSi2O7 solid solutions with orthorhombic structure (Pnma) were prepared by solid-state reaction method. The phase synthesis process, structural evolution and microwave dielectric properties of BaCu2-xCoxSi2O7 ceramics were investigated. Single BaCu2Si2O7 phase was obtained when calcined at 950 °C for 3 h and was decomposed into BaCuSi2O6 phase when calcined at 1075 °C for 3 h. The sintering process was effectively promoted when Cu2+ was replaced by Co2+ and the maximum solubility of BaCu2-xCoxSi2O7 was located between 0.15 and 0.20. P-V-L complex chemical bond theory and Raman spectra were used to explain the structure-property correlations of BaCu2-xCoxSi2O7 ceramics. The corrected dielectric constant (εr-corr) of BaCu2-xCoxSi2O7 ceramics decreased monotonously with the susceptibility (Σχμ) and ionic polarizability of primitive unit cell. The quality factor (Q × f) increased with bond strength and lattice energy (Ucal), especially the lattice energy of the Si-O bond. The temperature coefficient of resonant frequency (τf) was determined by the susceptibility and lattice energy of the Cu/Co-O bond. The following optimum microwave dielectric properties were obtained at x = 0.15 when sintered at 1000 °C for 3 h: εr = 8.45, Q×f =58958 GHz and τf = -34.4 ppm/°C.  相似文献   
52.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
53.
《Ceramics International》2020,46(4):4235-4239
In the work, we focused on the intrinsic dielectric behavior of Mg2TiO4 spinel ceramic by P–V–L theory and infrared spectra analysis. Ti–O bonds have larger bond ionicity values, thus playing an important role in dielectric polarization. The theoretical dielectric constant was predicted by calculating the bond susceptibility of each chemical bond. Furthermore, Ti(1)–O bonds are responsible for the structural stability of Mg2TiO4 ceramic. Based on classical dispersion theory, permittivity and loss corresponding to each infrared active mode were quantified, and then the crucial contribution of low-frequency modes to intrinsic dielectric properties were determined.  相似文献   
54.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
55.
Mg2(Ti1-xSnx)O4 (x?=?0–1) ceramics were prepared through conventional solid-state method. This paper focused on the dependence of microwave dielectric properties on crystal structural characteristics via crystal structure refinement, Raman spectra study and complex chemical bond theory. XRD spectrums delineated the phase information of a spinel structure, and structural characteristic of these compositions were achieved with the help of Rietveld refinements. Raman spectrums were used to depict the correlations between vibrational phonon modes and dielectric properties. The variation of permittivity is ascribed to the Mg2(Ti1-xSnx)O4 average bond covalency. The relationship among the B-site octahedral bond energy, tetrahedral bond energy and temperature coefficient are discussed by defining on the change rate of bond energy and the contribution rate of octahedral bond energy. The quality factor is affected by systematic total lattice energy, and the research of XPS patterns illustrated that oxygen vacancies can be effectively restrained in rich oxygen sintering process. Obviously, the microwave dielectric properties of Mg2(Ti1-xSnx)O4 compounds were obtained (εr= 12.18, Q×f?=?170,130?GHz, τf?=??53.1?ppm/°C, x?=?0.2).  相似文献   
56.
SrLa[Ga1−x(R0.5Ti0.5)x]O4 (R = Mg, Zn) ceramics were prepared by a standard solid state sintering method. The single-phase ceramics with K2NiF4-type layered perovskite structure and I4/mmm space group were obtained, indicating that SrLa(R0.5Ti0.5) and SrLaGaO4 can form the unlimited solid solutions. With increasing x for = Mg and Zn, εr increases monotonously, the Qf value first increases and then decreases, while τf increases from a negative to a positive value. The optimized microwave dielectric properties were obtained as following: εr = 23.3, Qf = 89 400 GHz, τf = −0.8 ppm/°C for SrLa[Ga0.6(Mg0.5Ti0.5)0.4]O4 and εr = 23.3, Qf = 76 200 GHz, τf = 0.2 ppm/°C for SrLa[Ga0.7(Zn0.5Ti0.5)0.3]O4, indicating that the present solid solution ceramics are the promising candidates as microwave resonator materials for the telecommunication applications.  相似文献   
57.
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours.  相似文献   
58.
The Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) low-permittivity microwave dielectric ceramics were prepared through solid-state reaction at 1350–1450 °C for 5 h. The relations between microwave dielectric properties and phase compositions for non-stoichiometric Ca(1+2y)Sn(1-x)Si(1+y)O(5-2x+4y) ceramics have been investigated. A single CaSnSiO5 phase with abnormally positive temperature coefficient of resonant frequency (τf = + 62.5 ppm/°C) was synthesised at 1450 °C. This composition was an effective τf compensator of CaSiO3 and Ca3SnSi2O9 phases with typically negative τf value. The CaSiO3 second phase was related to the Sn deficiency in the CaSn(1-x)SiO(5-2x) (0 < x < 1.0) composition, whereas the Ca3SnSi2O9 second phase was obtained by controlling the Ca:Sn:Si ratios on the basis of the Ca(1+2y)SnSi(1+y)O(5+4y) (0 < y < 1.0) composition. A promising low-permittivity millimetre-wave ceramic with most excellent microwave dielectric properties (εr = 10.2, Q×f = 81,000 GHz and τf = −4.8 ppm/°C) was produced from the Ca(1+2y)SnSi(1+y)O(5+4y) (y = 0.4) ceramic.  相似文献   
59.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
60.
In this work, ultra-low loss Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics were successfully prepared via the conventional solid-state method. X-ray photoelectron spectroscopy (XPS), thermally stimulated depolarization current (TSDC) and bond energy were used to determine the distinction between intrinsic and extrinsic dielectric loss in (Mg1/3Nb2/3)4+ ions substituted ceramics. The addition of (Mg1/3Nb2/3)4+ ions enhances the bond energy in unit cell without changing the crystal structure of Li2MgTiO4, which results in high Q·f value as an intrinsic factor. The extrinsic factors such as porosity and grain size influence the dielectric loss at lower sintering temperature, while the oxygen vacancies play dominant role when the ceramics densified at 1400?°C. The Li2MgTi0.7(Mg1/3Nb2/3)0.3O4 ceramics sintered at 1400?°C can achieve an excellent combination of microwave dielectric properties: εr =?16.19, Q·f?=?160,000?GHz and τf =??3.14?ppm/°C. In addition, a certain amount of LiF can effectively lower the sintering temperature of the matrix, and the Li2MgTi0.7(Mg1/3Nb2/3)0.3O4-3?wt% LiF ceramics sintered at 1100?°C possess balanced properties with εr?=?16.32, Q·f?=?145,384?GHz and τf =??16.33?ppm/°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号