首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74876篇
  免费   8032篇
  国内免费   3856篇
电工技术   12656篇
技术理论   1篇
综合类   6860篇
化学工业   9112篇
金属工艺   2539篇
机械仪表   3863篇
建筑科学   5138篇
矿业工程   2362篇
能源动力   2986篇
轻工业   2938篇
水利工程   2189篇
石油天然气   3592篇
武器工业   632篇
无线电   7023篇
一般工业技术   7850篇
冶金工业   2767篇
原子能技术   1086篇
自动化技术   13170篇
  2024年   268篇
  2023年   986篇
  2022年   1875篇
  2021年   2112篇
  2020年   2308篇
  2019年   2145篇
  2018年   1940篇
  2017年   2524篇
  2016年   2622篇
  2015年   2730篇
  2014年   3991篇
  2013年   4226篇
  2012年   4882篇
  2011年   5130篇
  2010年   3520篇
  2009年   3976篇
  2008年   3742篇
  2007年   4114篇
  2006年   3724篇
  2005年   3207篇
  2004年   3542篇
  2003年   2956篇
  2002年   3274篇
  2001年   2700篇
  2000年   2399篇
  1999年   2012篇
  1998年   1375篇
  1997年   1279篇
  1996年   2082篇
  1995年   1320篇
  1994年   1053篇
  1993年   483篇
  1992年   384篇
  1991年   374篇
  1990年   308篇
  1989年   227篇
  1988年   177篇
  1987年   125篇
  1986年   122篇
  1985年   128篇
  1984年   89篇
  1983年   66篇
  1982年   71篇
  1981年   44篇
  1980年   31篇
  1979年   28篇
  1978年   12篇
  1977年   14篇
  1976年   11篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
12.
Ce:Y3Al5O12 transparent ceramics (TCs) with appropriate emission light proportion and high thermal stability are significant to construct white light emitting diode devices with excellent chromaticity parameters. In this work, strategies of controlling crystal-field splitting around Ce3+ ion and doping orange-red emitting ion, were adopted to fabricate Ce:(Y,Tb)3(Al,Mn)5O12 TCs via vacuum sintering technique. Notably, 85.4 % of the room-temperature luminescence intensity of the TC was retained at 150 °C, and the color rendering index was as high as 79.8. Furthermore, a 12 nm red shift and a 16.2 % increase of full width at half maximum were achieved owing to the synergistic effects of Tb3+ and Mn2+ ions. By combining TCs with a 460 nm blue chip, a warm white light with a low correlated color temperature of 4155 K was acquired. Meanwhile, the action mechanism of Tb3+ ion and the energy transfer between Ce3+ and Mn2+ ions were verified in prepared TCs.  相似文献   
13.
《Ceramics International》2022,48(15):21600-21609
Stereolithography (SL) shows advantages for preparing alumina-based ceramics with complex structures. The effects of the particle size distribution, which strongly influence the sintering properties in ceramic SL, have not been systematically explored until now. Herein, the influence of the particle size distribution on SL-manufactured alumina ceramics was investigated, including bending strength at room temperature, post-sintering shrinkage, porosity, and microstructural morphology. Seven particle size distributions of alumina ceramics were studied (in μm/μm: 30/5, 20/3, 10/2, 5/2, 5/0.8, 3/0.5, and 2/0.3); a coarse:fine particle ratio of 6:4 was maintained. At the same sintering temperature, the degree of sintering was greater for finer particle sizes. The particle size distribution had a larger influence on flexural strength, porosity and shrinkage than sintering temperature when the particle size distribution difference reached 10-fold but was weaker for 10 μm/2 μm, 5 μm/2 μm and 5 μm/0.8 μm. The sintering shrinkage characteristics of cuboid samples with different particle sizes were studied. The use of coarse particles influenced the accuracy of small-scale samples. When the particle size was comparable to the sample width, such as 30 μm/5 μm and 5 mm, the width shrinkage was consistent with the height shrinkage. When the particle size was much smaller than the sample width, such as 2 μm/0.3 μm and 5 mm, the width shrinkage was consistent with the length shrinkage. The results of this study provide meaningful guidance for future research on applications of SL and precise control of alumina ceramics through particle gradation.  相似文献   
14.
In practical applications of structural health monitoring technology, a large number of distributed sensors are usually adopted to monitor the big dimension structures and different kinds of damage. The monitored structures are usually divided into different sub-structures and monitored by different sensor sets. Under this situation, how to manage the distributed sensor set and fuse different methods to obtain a fast and accurate evaluation result is an important problem to be addressed deeply. In the paper, a multi-agent fusion and coordination system is presented to deal with the damage identification for the strain distribution and joint failure in the large structure. Firstly, the monitoring system is adopted to distributedly monitor two kinds of damages, and it self-judges whether the static load happens in the monitored sub-region, and focuses on the static load on the sub-region boundary to obtain the sensor network information with blackboard model. Then, the improved contract net protocol is used to dynamically distribute the damage evaluation module for monitoring two kinds of damage uninterruptedly. Lastly, a reliable assessment for the whole structure is given by combing various heterogeneous classifiers strengths with voting-based fusion. The proposed multi-agent system is illustrated through a large aerospace aluminum plate structure experiment. The result shows that the method can significantly improve the monitoring performance for the large-scale structure.  相似文献   
15.
This paper proposes a method for the coordinated control of power factor by means of a multiagent approach. The proposed multiagent system consists of two types of agent: single feeder agent (F_AG) and bus agent (B_AG). In the proposed system, an F_AG plays as an important role, which decides the power factors of all distributed generators by executing the load flow calculations repeatedly. The voltage control strategies are implemented as the class definition of Java into the system. In order to verify the performance of the proposed method, it has been applied to a typical distribution model system. The simulation results show that the system is able to control very violent fluctuation of the demands and the photovoltaic (PV) generations.  相似文献   
16.
17.
18.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   
19.
This paper presents an effective approach to achieve efficient electrical actuation and monitoring of shape recovery based on patterned Au electrodes on shape memory polymer (SMP). The electrically responsive shape recovery behavior was characterized and monitored by the evolution change in electrical resistance of patterned Au electrode. Both electrical actuation and temperature distribution in the SMP have been improved by optimizing the Au electrode patterns. The electrically actuated shape recovery behavior and temperature evolution during the actuation were monitored and characterized. The resistance changes could be used to detect beginning/finishing points of the shape recovery. Therefore, the Au electrode not only significantly enhances the electrical actuation performance to achieve a fast electrical actuation, but also enables the resistance signal to detect the free recovery process.  相似文献   
20.
In different computer models, shape is represented using different methodologies, to varying degrees of precision. This paper examines two approaches to shape representation, and their effects on accuracy in the context of cylindrical particle packing. Two discrete element method (DEM) based software packages are used. A X-ray CT scan of a packed bed provides the experimental measurements for comparison. Eight sphere-composite representations of the same cylindrical pellet were tested. Two of these gave results that quantitatively follow experimental measurements. A range of factors that in theory could affect accuracy of the simulation results are examined, including edge roundedness, surface roughness and restitutional behaviour as a function of sphere-composite representations. The conclusion is that, for packing at least, matching the object's overall shape and dimensions is not enough. Only when a high enough resolution is applied to corners and edges, could the sphere-composite approach possibly match the experimental data quantitatively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号