首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282878篇
  免费   25206篇
  国内免费   16437篇
电工技术   43437篇
技术理论   35篇
综合类   29625篇
化学工业   18803篇
金属工艺   9987篇
机械仪表   21125篇
建筑科学   27170篇
矿业工程   10796篇
能源动力   19367篇
轻工业   6727篇
水利工程   7779篇
石油天然气   8604篇
武器工业   4395篇
无线电   26543篇
一般工业技术   18474篇
冶金工业   10266篇
原子能技术   3475篇
自动化技术   57913篇
  2024年   1133篇
  2023年   3356篇
  2022年   6141篇
  2021年   7411篇
  2020年   8035篇
  2019年   6217篇
  2018年   5600篇
  2017年   7527篇
  2016年   8809篇
  2015年   9769篇
  2014年   18132篇
  2013年   15969篇
  2012年   20798篇
  2011年   22372篇
  2010年   17030篇
  2009年   17147篇
  2008年   17098篇
  2007年   21184篇
  2006年   18616篇
  2005年   16282篇
  2004年   13392篇
  2003年   11988篇
  2002年   9324篇
  2001年   7868篇
  2000年   6569篇
  1999年   5309篇
  1998年   4012篇
  1997年   3266篇
  1996年   2901篇
  1995年   2400篇
  1994年   2009篇
  1993年   1411篇
  1992年   1167篇
  1991年   892篇
  1990年   727篇
  1989年   597篇
  1988年   443篇
  1987年   273篇
  1986年   175篇
  1985年   208篇
  1984年   179篇
  1983年   139篇
  1982年   138篇
  1981年   96篇
  1980年   90篇
  1979年   68篇
  1978年   46篇
  1977年   37篇
  1976年   25篇
  1959年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
This paper considers a novel distributed iterative learning consensus control algorithm based on neural networks for the control of heterogeneous nonlinear multiagent systems. The system's unknown nonlinear function is approximated by suitable neural networks; the approximation error is countered by a robust term in the control. Two types of control algorithms, both of which utilize distributed learning laws, are provided to achieve consensus. In the provided control algorithms, the desired reference is considered to be an unknown factor and then estimated using the associated learning laws. The consensus convergence is proven by the composite energy function method. A numerical simulation is ultimately presented to demonstrate the efficacy of the proposed control schemes.  相似文献   
102.
103.
The use of geothermal energy and its associated technologies has been increasing worldwide. However, there has been little paradigmatic research conducted in this area. This paper proposes a systematic methodology to research the development trends for the sustainable development of geothermal energy. A novel data analysis system was created to research the geothermal energy utilization trends, and a technological paradigm theory was adopted to explain the technological changes. A diffusion velocity model was used to simulate and forecast the geothermal power generation development in the diffusion phase. Simulation results showed that the development of installed capacity for geothermal generation had a strong inertia force along with the S-curve. Power generation from geothermal power sources reached a peak in 2008 and is estimated to be saturated by 2030. Geothermal energy technologies in hybrid power systems based on other renewable energy sources look to be more promising in the future.  相似文献   
104.
In this paper, the development of the models for the prediction of rock mass P wave velocity is presented. For model development, the database of 53 cases including widely used and recorded drilling parameters and P wave velocity was constructed from the field studies conducted in 13 open pit lignite mines. Both conventional linear, non-linear multiple regression and Adaptive Neuro Fuzzy Inference System (ANFIS) were used for model development. Prediction performance indicators showed that ANFIS model presented the best performance and it can successfully be used for the preliminary prediction of P wave velocities of rock masses.  相似文献   
105.
以高精度三维地震资料为基础,结合构造演化恢复和区域构造背景,系统研究了准噶尔盆地车排子凸起断裂分布和形成机制。结果表明,车排子凸起发育深部和浅部2套断裂体系,深部断裂体系和浅部断裂体系分别发育3种断裂样式。车排子凸起共经历5个构造演化阶段,其中,晚二叠世挤压-逆冲控制了深部断裂体系的初始形成,晚侏罗世逆冲-走滑控制了深部断裂体系的最终定型,新近纪叠加掀斜、局部伸展控制了浅部断裂体系的形成。不同断裂体系在油气成藏过程中均起到了重要作用。其中:深部断裂体系的红车断裂是重要的油源断裂,低序级断层控制形成了石炭系火山岩优质储集体;浅部断裂体系使得油气向浅部层系运移调整,同时形成了断块圈闭、断鼻圈闭和断层-岩性圈闭等丰富的圈闭类型。  相似文献   
106.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form.  相似文献   
107.
Assembly line balancing is important for the efficiency of the assembly process, however, a wide range of disruptions can break the current workload balance. Some researchers explored the task assignment plan for the assembly line balancing problem with the assumption that the assembly process is smooth with no disruption. Other researchers considered the impacts of disruptions, but they only explored the task re-assignment solutions for the assembly line re-balancing problem with the assumption that the re-balancing decision has been made already. There is limited literature exploring on-line adjustment solutions (layout adjustment and production rate adjustment) for an assembly line in a dynamic environment. This is because real-time monitoring of an assembly process was impossible in the past, and it is difficult to incorporate uncertainty factors into the balancing process because of the randomness and non-linearity of these factors. However, Industry 4.0 breaks the information barriers between different parts of an assembly line, since smart, connected products, which are enabled by advanced information and communication technology, can intelligently interact and communicate with each other and collect, process and produce information. Smart control of an assembly line becomes possible with the large amounts of real-time production data in the era of Industry 4.0, but there is little literature considering this new context. In this study, a fuzzy control system is developed to analyze the real-time information of an assembly line, with two types of fuzzy controllers in the fuzzy system. Type 1 fuzzy controller is used to determine whether the assembly line should be re-balanced to satisfy the demand, and type 2 fuzzy controller is used to adjust the production rate of each workstation in time to eliminate blockage and starvation, and increase the utilization of machines. Compared with three assembly lines without the proposed fuzzy control system, the assembly line with the fuzzy control system performs better, in terms of blockage ratio, starvation ratio and buffer level. Additionally, with the improvement of information transparency, the performance of an assembly line will be better. The research findings shed light on the smart control of the assembly process, and provide insights into the impacts of Industry 4.0 on assembly line balancing.  相似文献   
108.
Listeria contamination in processing plant environments is a major issue for the seafood industry worldwide; faster and more reliable results are therefore desired for early detection and monitoring of environmental Listeria spp. This study aimed to gain a better understanding of the prevalence and diversity of Listeria spp., and to evaluate a rapid detection method, the 3M Molecular Detection Assay (MDA) Listeria, for its ability to detect Listeria spp. in environmental samples from seafood processing plants. Duplicate environmental sponge samples (n = 444) were collected from 152 different sites within three seafood processing plants, and analyzed for Listeria spp. by the MDA method (after 26 and 48 h of enrichment) and the U.S. Food and Drug Administration Bacteriological Analytical Manual method. Overall, detection of Listeria spp. by the two methods did not differ significantly (p > 0.05); 11 (4.9%) and 13 (5.9%) samples were positive for Listeria spp. by the MDA and FDA-BAM method, respectively. The sensitivity of the MDS was 87.0% (95% CI: 77.4–96.6%), specificity was 97.6% (95% CI: 95.5–99.7%), accuracy was 95.3%, and the positive predictive value was 89.4% (95% CI: 80.5–98.2%). Classification of 19 Listeria isolates by partial SigB sequencing analysis identified three allelic types. Twelve of these isolates were ATs 58 and 60 which were classified as Listeria monocytogenes lineage I and serotypes 1/2b, 3b, 4b, 4d, 4e, by multiplex-PCR serotyping. Six Listeria isolates were classified as Listeria innocua (AT31). Our data show that the 3M Molecular Detection Assay Listeria provides rapid and reliable results for detection and monitoring of Listeria spp., which are important for seafood processing plants. Effective Listeria monitoring programs will allow for improved development of Listeria control measures in order to minimize cross-contamination in finished products.  相似文献   
109.
110.
Solar thermochemical hydrogen production with energy level upgraded from solar thermal to chemical energy shows great potential. By integrating mid-and-low temperature solar thermochemistry and solid oxide fuel cells, in this paper, a new distributed energy system combining power, cooling, and heating is proposed and analyzed from thermodynamic, energy and exergy viewpoints. Different from the high temperature solar thermochemistry (above 1073.15 K), the mid-and-low temperature solar thermochemistry utilizes concentrated solar thermal (473.15–573.15 K) to drive methanol decomposition reaction, reducing irreversible heat collection loss. The produced hydrogen-rich fuel is converted into power through solid oxide fuel cells and micro gas turbines successively, realizing the cascaded utilization of fuel and solar energy. Numerical simulation is conducted to investigate the system thermodynamic performances under design and off-design conditions. Promising results reveal that solar-to-hydrogen and net solar-to-electricity efficiencies reach 66.26% and 40.93%, respectively. With the solar thermochemical conversion and hydrogen-rich fuel cascade utilization, the system exergy and overall energy efficiencies reach 59.76% and 80.74%, respectively. This research may provide a pathway for efficient hydrogen-rich fuel production and power generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号