首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21230篇
  免费   1528篇
  国内免费   863篇
电工技术   681篇
综合类   1236篇
化学工业   11371篇
金属工艺   1340篇
机械仪表   547篇
建筑科学   1958篇
矿业工程   180篇
能源动力   234篇
轻工业   572篇
水利工程   112篇
石油天然气   256篇
武器工业   77篇
无线电   912篇
一般工业技术   3447篇
冶金工业   366篇
原子能技术   151篇
自动化技术   181篇
  2024年   92篇
  2023年   290篇
  2022年   467篇
  2021年   618篇
  2020年   526篇
  2019年   495篇
  2018年   523篇
  2017年   724篇
  2016年   599篇
  2015年   679篇
  2014年   961篇
  2013年   1211篇
  2012年   1519篇
  2011年   1471篇
  2010年   1143篇
  2009年   1273篇
  2008年   1087篇
  2007年   1352篇
  2006年   1306篇
  2005年   1118篇
  2004年   872篇
  2003年   733篇
  2002年   665篇
  2001年   586篇
  2000年   513篇
  1999年   463篇
  1998年   368篇
  1997年   314篇
  1996年   234篇
  1995年   189篇
  1994年   186篇
  1993年   165篇
  1992年   201篇
  1991年   167篇
  1990年   148篇
  1989年   128篇
  1988年   33篇
  1987年   40篇
  1986年   27篇
  1985年   34篇
  1984年   27篇
  1983年   18篇
  1982年   35篇
  1981年   5篇
  1980年   5篇
  1979年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
11.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
12.
The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.  相似文献   
13.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
14.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
15.
Abstract

Different drying methods (spray drying (SD), vacuum drying (VD), microwave vacuum drying (MVD), and infrared vacuum drying (IFVD)) were applied in order to compare the hygroscopicity behavior of chicken powders. The hygroscopicity curves and glass transition temperature were used to evaluate the influence of ambient humidity and temperature on moisture absorption of powders. The results showed that the chicken powder dried by MVD had the lowest moisture absorption, followed by IFVD, VD, and SD. The hygroscopicity of SD chicken powders was different from other three kinds of chicken powders due to the physical properties of particles and the changes of protein secondary structure as detected by the Fourier transform-infrared spectrometer. For the three vacuum drying methods, the difference of protein secondary structure was the main reason of differences in hygroscopicity. Although MVD chicken powders were slightly inferior to SD chicken powders in taste, MVD chicken powders were the best in terms of smell and color as suggested by instrumental sensory parameter evaluations. It was found that MVD had a positive effect on reducing moisture absorption and maintaining sensory quality of chicken powders.  相似文献   
16.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
17.
Mechanical durability of extruded fish feed must be optimized to lower economic losses as well as emission of organic matter to aquatic environments. The glass transition hypothesis for viscoelastic biopolymers is demonstrated and confirmed experimentally to be valid for extruded fish feed pellets. It is proposed and demonstrated that it is important to avoid early glass transition onset, to optimize the obtained mechanical durability. From the proposed glass transition hypothesis, immediate process relevance to the pre-drying transport mechanism is demonstrated. Furthermore, measured mechanical durability is found to range from 1.5 to 5.0% loss, for different combinations of drying parameters.  相似文献   
18.
Radiophotoluminescence phenomena have been widely investigated on various types of materials for dosimetry applications. We report that an aluminoborosilicate glass containing 0.005 mol% copper exhibits intense photoluminescence in the visible region induced by X-ray and γ-ray irradiation. The luminescence is assigned to the 3d94s1 → 3d10 transition of Cu+. The proportionality of the intensity of the induced photoluminescence to the irradiation dose was confirmed up to 0.5 kGy using 60Co γ-ray irradiation. Based on the spectroscopic results, a potential mechanism was proposed for the enhancement of the photoluminescence. The exposure to the ionizing radiation generates electron-hole pairs in the glass, and the electrons are subsequently captured by the Cu2+ ions, which are converted to Cu+ and emit the luminescence. For the glass containing 0.01 mol% copper, the pronounced enhancement of the photoluminescence was not observed because the reverse reaction, ie, the capture of the holes by the Cu+ ions, becomes prominent. The photoluminescence induced by the irradiation was stably observed for the glasses kept at room temperature and even for the glasses heat-treated at 150°C. However, the induced photoluminescence could be eliminated by the heat treatment at a temperature at 500°C, and the glass returned to the initial pre-irradiation state. The Cu-doped aluminoborosilicate glass is a potential candidate for use in dosimetry applications.  相似文献   
19.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
20.
The Er3+ doped oxyfluorogermanate glasses, with a composition containing Na element, were synthesized by the conventional melting–quenching technique. When Na element was introduced into the composition of oxyfluorogermanate glass, the crystals behavior was investigated in details. Depending on the annealing procedure supplied, thermal annealing of precursor glasses in the system GeO2/BaF2/AlF3/Na2O/NaF/ZnO/GdF3/ErF3 led to the precipitation of different crystal phase nanocrystals. It was confirmed the nanocrystals in GC600 is orthorhombic NaBaAlF6 which led to enhance obviously in the UC luminescence of Er3+. However, the nanocrystals in G585 led to decrease in the UC luminescence, which indicated few Er ions enter into the lattice of this nanocrystal phase. The reason of the decrease in UC emission intensity of GC585 was analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号