首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44647篇
  免费   5052篇
  国内免费   2412篇
电工技术   13424篇
技术理论   1篇
综合类   4107篇
化学工业   1828篇
金属工艺   1809篇
机械仪表   4535篇
建筑科学   2579篇
矿业工程   1281篇
能源动力   1129篇
轻工业   975篇
水利工程   956篇
石油天然气   1269篇
武器工业   450篇
无线电   7253篇
一般工业技术   2892篇
冶金工业   1217篇
原子能技术   391篇
自动化技术   6015篇
  2024年   159篇
  2023年   439篇
  2022年   926篇
  2021年   1231篇
  2020年   1346篇
  2019年   1006篇
  2018年   1016篇
  2017年   1323篇
  2016年   1436篇
  2015年   1832篇
  2014年   3105篇
  2013年   2698篇
  2012年   3742篇
  2011年   3771篇
  2010年   2828篇
  2009年   2820篇
  2008年   2701篇
  2007年   3127篇
  2006年   2705篇
  2005年   2363篇
  2004年   1967篇
  2003年   1723篇
  2002年   1351篇
  2001年   1284篇
  2000年   970篇
  1999年   889篇
  1998年   653篇
  1997年   549篇
  1996年   478篇
  1995年   364篇
  1994年   276篇
  1993年   215篇
  1992年   179篇
  1991年   127篇
  1990年   112篇
  1989年   110篇
  1988年   68篇
  1987年   36篇
  1986年   33篇
  1985年   33篇
  1984年   31篇
  1983年   22篇
  1982年   21篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
This paper deals with the application of wavelet transforms for the detection, classification and location of faults on transmission lines. A Global Positioning System clock is used to synchronize sampling of voltage and current signals at both the ends of the transmission line. The detail coefficients of current signals of both the ends are utilized to calculate fault indices. These fault indices are compared with threshold values to detect and classify the faults. Artificial Neural Networks are employed to locate the fault, which make use of approximate decompositions of the voltages and currents of local end. The proposed algorithm is tested successfully for different locations and types of faults.  相似文献   
12.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   
13.
在通讯设备爆炸式增长的时代,移动边缘计算作为5G通讯技术的核心技术之一,对其进行合理的资源分配显得尤为重要。移动边缘计算的思想是把云计算中心下沉到基站部署(边缘云),使云计算中心更加靠近用户,以快速解决计算资源分配问题。但是,相对于大型的云计算中心,边缘云的计算资源有限,传统的虚拟机分配方式不足以灵活应对边缘云的计算资源分配问题。为解决此问题,提出一种根据用户综合需求变化的动态计算资源和频谱分配算法(DRFAA),采用"分治"策略,并将资源模拟成"流体"资源进行分配,以寻求较大的吞吐量和较低的传输时延。实验仿真结果显示,动态计算资源和频谱分配算法可以有效地降低用户与边缘云之间的传输时延,也可以提高边缘云的吞吐量。  相似文献   
14.
Although topology optimization is established for linear static problems, more effort is required for solving nonlinear plastic problems. A new topology optimization approach with equivalent static loads (ESLs) is suggested to find the optimum topologies and locations of plastic hinges of thin-walled crash boxes by considering crash-induced deformation, the main crash energy-absorbing mechanism. Together with finite element method crashworthiness analyses, considering all nonlinearities with rate-dependent plasticity, the method was developed using an appropriate time-incremental scheme of ESLs without removing any high values of loads. Analyses show that the crash boxes with optimum topologies have energy-absorbing capabilities equivalent to the original structure. The proposed method is evaluated for two crashes: a crash box at low speed and a double cell subjected to high-speed collision. The results indicate that this method captures nonlinear crushing behaviours and accurate locations of plastic hinges where, if proper reinforcements are made, energy absorption can be enhanced.  相似文献   
15.
This paper reviews recent studies, that not only includes both experiments and modeling components, but celebrates a close coupling between these techniques, in order to provide insights into the plasticity and failure of polycrystalline metals. Examples are provided of studies across multiple-scales, including, but not limited to, density functional theory combined with atom probe tomography, molecular dynamics combined with in situ transmission electron miscopy, discrete dislocation dynamics combined with nanopillars experiments, crystal plasticity combined with digital image correlation, and crystal plasticity combined with in situ high energy X-ray diffraction. The close synergy between in situ experiments and modeling provides new opportunities for model calibration, verification, and validation, by providing direct means of comparison, thus removing aspects of epistemic uncertainty in the approach. Further, data fusion between in situ experimental and model-based data, along with data driven approaches, provides a paradigm shift for determining the emergent behavior of deformation and failure, which is the foundation that underpins the mechanical behavior of polycrystalline materials.  相似文献   
16.
以用户为中心的可见光通信协作传输是近年来出现的新架构,这导致虚拟小区之间出现重叠。为避免导频污染问题,每个虚拟小区中的光接入点(AP)或者虚拟小区中选择相同AP的用户发送的训练序列应该是正交的。针对可见光通信中以用户为中心的协作网络,研究训练资源的正交分配问题,提出了一种新的导频分配算法,联合导频分配和用户选择问题,以期最大限度地增加虚拟小区内可被接入的用户数。分析和仿真结果表明,该导频分配方案可以有效改善导频污染问题,提高训练资源利用率,并且相比已有的导频分配方案,性能有所改进。  相似文献   
17.
The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user’s face, although a few respirators provided >90% efficiency at the 100−300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.  相似文献   
18.
Clip-art image segmentation is widely used as an essential step to solve many vision problems such as colorization and vectorization. Many of these applications not only demand accurate segmentation results, but also have little tolerance for time cost, which leads to the main challenge of this kind of segmentation. However, most existing segmentation techniques are found not sufficient for this purpose due to either their high computation cost or low accuracy. To address such issues, we propose a novel segmentation approach, ECISER, which is well-suited in this context. The basic idea of ECISER is to take advantage of the particular nature of cartoon images and connect image segmentation with aliased rasterization. Based on such relationship, a clip-art image can be quickly segmented into regions by re-rasterization of the original image and several other computationally efficient techniques developed in this paper. Experimental results show that our method achieves dramatic computational speedups over the current state-of-the-art approaches, while preserving almost the same quality of results.  相似文献   
19.
20.
Assembly line balancing is important for the efficiency of the assembly process, however, a wide range of disruptions can break the current workload balance. Some researchers explored the task assignment plan for the assembly line balancing problem with the assumption that the assembly process is smooth with no disruption. Other researchers considered the impacts of disruptions, but they only explored the task re-assignment solutions for the assembly line re-balancing problem with the assumption that the re-balancing decision has been made already. There is limited literature exploring on-line adjustment solutions (layout adjustment and production rate adjustment) for an assembly line in a dynamic environment. This is because real-time monitoring of an assembly process was impossible in the past, and it is difficult to incorporate uncertainty factors into the balancing process because of the randomness and non-linearity of these factors. However, Industry 4.0 breaks the information barriers between different parts of an assembly line, since smart, connected products, which are enabled by advanced information and communication technology, can intelligently interact and communicate with each other and collect, process and produce information. Smart control of an assembly line becomes possible with the large amounts of real-time production data in the era of Industry 4.0, but there is little literature considering this new context. In this study, a fuzzy control system is developed to analyze the real-time information of an assembly line, with two types of fuzzy controllers in the fuzzy system. Type 1 fuzzy controller is used to determine whether the assembly line should be re-balanced to satisfy the demand, and type 2 fuzzy controller is used to adjust the production rate of each workstation in time to eliminate blockage and starvation, and increase the utilization of machines. Compared with three assembly lines without the proposed fuzzy control system, the assembly line with the fuzzy control system performs better, in terms of blockage ratio, starvation ratio and buffer level. Additionally, with the improvement of information transparency, the performance of an assembly line will be better. The research findings shed light on the smart control of the assembly process, and provide insights into the impacts of Industry 4.0 on assembly line balancing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号