首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95612篇
  免费   10436篇
  国内免费   5319篇
电工技术   16091篇
技术理论   14篇
综合类   7191篇
化学工业   9623篇
金属工艺   2858篇
机械仪表   4452篇
建筑科学   13211篇
矿业工程   2867篇
能源动力   13722篇
轻工业   2234篇
水利工程   5082篇
石油天然气   2950篇
武器工业   958篇
无线电   8777篇
一般工业技术   8262篇
冶金工业   3982篇
原子能技术   1485篇
自动化技术   7608篇
  2024年   507篇
  2023年   1868篇
  2022年   3210篇
  2021年   3666篇
  2020年   3851篇
  2019年   3267篇
  2018年   2734篇
  2017年   3328篇
  2016年   3781篇
  2015年   3877篇
  2014年   6883篇
  2013年   6113篇
  2012年   7255篇
  2011年   7895篇
  2010年   6102篇
  2009年   6077篇
  2008年   5518篇
  2007年   6181篇
  2006年   5045篇
  2005年   3977篇
  2004年   3412篇
  2003年   2886篇
  2002年   2464篇
  2001年   2125篇
  2000年   1855篇
  1999年   1424篇
  1998年   1075篇
  1997年   844篇
  1996年   785篇
  1995年   623篇
  1994年   528篇
  1993年   421篇
  1992年   301篇
  1991年   259篇
  1990年   205篇
  1989年   182篇
  1988年   145篇
  1987年   96篇
  1986年   79篇
  1985年   101篇
  1984年   94篇
  1983年   59篇
  1982年   81篇
  1981年   36篇
  1980年   49篇
  1979年   29篇
  1978年   16篇
  1977年   14篇
  1959年   8篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
11.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
12.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
13.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
14.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
15.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
16.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   
17.
The charge sources, as well as the charging mechanism of the contact electrification (CE) of polymers, are still debatable. Since CE is accompanied by destruction, it is considered that “hard contacting” via ball milling can induce covalent bond scission and produce naked-activated-charge sources. Regarding “soft contacting” via nano-scale sliding, which does not induce covalent bond scission, a frontier-electron, “f-electron, of the naked-activated-charge source is crucial to electron transfer among the naked-activated-charge sources. Here, we configure naked-activated-charge-source models, naked-activated-mechano-anion, and naked-activated-mechano-cation, which are produced by mechanical energy induced heterogeneous covalent bond scission, as well as naked-activated-mechano-radicals that are produced by homogeneous covalent bond scission. Regarding “soft contacting” among naked-activated-charge sources in a vacuum, f-electron can be transferred from a donor to an acceptor if the energy level of the donor is higher than that of the acceptor. The net amount of the normalized transferred-f-electrons is obtained by adopting settings in which the average energy level of the naked-activated-charge sources (as the donors) is higher than that of the sources employed as acceptors. Thus, the surfaces comprising the donors and acceptors will exhibit positive and negative net surface charges, respectively. We conclude that net surface charges depend on the average energy level of naked-activated-charge sources. Further, we observe that the alignment of polyethylene (PE)-polyvinyl chloride (PVC)-polytetrafluoroethylene (PTFE) to the average energy level is identical to that of the triboelectric series.  相似文献   
18.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
19.
As hydrogen refueling stations become increasingly common, it is clear that a high level of economic efficiency and safety is crucial to promoting their use. One way to reduce costs is to use a simple orifice instead of an excess flow valve, which Japanese safety regulations have identified as a safety device. However, there is concern about its effect on refueling time and on risk due to hydrogen leakage. To clarify the effect, we did a study of model-based refueling time evaluation and quantitative risk assessment for a typical refueling station. This study showed that an orifice is an effective alternative safety device. The increase in refueling time was less than 10%, based on simulations using a dynamic physical model of the station. Neither was there a significant difference in the risk between a configuration with excess flow valves and one with an orifice.  相似文献   
20.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号