首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59803篇
  免费   8096篇
  国内免费   3344篇
电工技术   9869篇
技术理论   5篇
综合类   5917篇
化学工业   10767篇
金属工艺   1739篇
机械仪表   3622篇
建筑科学   8320篇
矿业工程   1284篇
能源动力   6100篇
轻工业   1452篇
水利工程   1813篇
石油天然气   1607篇
武器工业   472篇
无线电   3638篇
一般工业技术   6032篇
冶金工业   1836篇
原子能技术   906篇
自动化技术   5864篇
  2024年   292篇
  2023年   999篇
  2022年   1755篇
  2021年   2009篇
  2020年   2121篇
  2019年   1885篇
  2018年   1748篇
  2017年   2055篇
  2016年   2179篇
  2015年   2396篇
  2014年   3689篇
  2013年   3756篇
  2012年   4172篇
  2011年   4693篇
  2010年   3489篇
  2009年   3595篇
  2008年   3452篇
  2007年   3982篇
  2006年   3624篇
  2005年   3205篇
  2004年   2556篇
  2003年   2364篇
  2002年   1904篇
  2001年   1572篇
  2000年   1331篇
  1999年   1093篇
  1998年   863篇
  1997年   783篇
  1996年   679篇
  1995年   564篇
  1994年   446篇
  1993年   350篇
  1992年   315篇
  1991年   220篇
  1990年   223篇
  1989年   194篇
  1988年   162篇
  1987年   99篇
  1986年   76篇
  1985年   62篇
  1984年   77篇
  1983年   53篇
  1982年   38篇
  1981年   17篇
  1980年   16篇
  1979年   8篇
  1978年   4篇
  1966年   8篇
  1959年   15篇
  1951年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
针对国内某炼油厂延迟焦化加热炉三点注汽问题,采用热负荷自动调节的算法进行了研究。运用该模型方法,分析了三点注汽量对加热炉热负荷和炉管结焦系数的影响,发现三点注汽量的改变均会对热负荷和炉管结焦系数产生影响,主要表现为提高注汽量将会提高热负荷,同时降低结焦系数;第1点注汽量和第2点注汽量对热负荷和结焦系数的影响较强,第3点注汽量对热负荷和结焦系数的影响较弱。在实际操作中,加热炉中的结焦程度既不能太强也不能太弱,合适的结焦系数能够保证正常开工周期里炉管不结焦,也能保证瓦斯、注汽量等参数的合理分配。通过对热负荷、注汽量的智能分配,可得到不同原料油加工负荷条件下更加合理的装置运行方案。  相似文献   
42.
With increasing consumption of natural gas (NG), small NG reservoirs, such as coalbed methane and oil field associated gas, have recently drawn significant attention. Owing to their special characteristics (e.g., scattered distribution and small output), small-scale NG liquefiers are highly required. Similarly, the mixed refrigerant cycle (MRC) is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption. In consideration of the above, this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry (TIPC), China. To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies, three main improvements, i.e., low-pressure MRC process driven by oil-lubricated screw compressor, compact cold box with the new designed heat exchangers, and standardized equipment manufacturing and integrated process technology have been made. The development pattern of “rapid cluster application and flexible liquefaction center” has been eventually proposed. The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW·h/Nm3. It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks.  相似文献   
43.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
44.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
45.
The present study focuses on experimental investigation of through the thickness displacement and strain field in thin adhesive layer in single sided (unsymmetrical) patch repaired CFRP (carbon fiber reinforced polymer) panel under tensile load. Digital image correlation (DIC) technique is employed to acquire the displacement and strain (longitudinal, peel and shear) field. Experimental determination of shear transfer length based on shear strain field obtained from DIC is introduced to estimate the optimum overlap length which is an essential parameter in patch design for the repair of CFRP structures. Further, DIC experiment with magnified optics is performed to get an insight into complex and localized strain field over thin adhesive layer especially at critical zones leading to damage initiation. The failure mechanism, load displacement behavior, damage initiation and propagation are closely monitored using DIC. The influence of patch edge tapering on strain distribution in adhesive layer is also investigated. The DIC successfully captures the global and localized strain field at critical zones over thin adhesive layer and further helps in monitoring the damage based on strain anomalies. Strains are found to have maximum magnitude at the patch overlap edge and the shear strain level in adhesive layer is higher than the peel strain. Normal tapering increases the peel strain and has negligible influence on shear strain level in adhesive layer. The recommended overlap length is found to be consistent with the recommendation in the literature. Whole field strain pattern and the overlap length obtained from experiment are further compared with the finite element analysis results and they appear to be in good coherence.  相似文献   
46.
The Caputo and Caputo–Fabrizio derivative are applied to study a second‐grade nanofluid over a vertical plate. A comparative analysis is presented to study the unsteady free convection of a second‐grade nanofluid with a new time–space fractional heat conduction. The governing equations with mixed time–space fractional derivatives are non‐dimensionalized and solved numerically, and a comparison between the Caputo and the Caputo–Fabrizio models is made. It is found that the temperature is higher for the Caputo–Fabrizio fractional model than the Caputo model, but the higher velocity only exists near the vertical plate for the Caputo–Fabrizio model than the Caputo model. Moreover, the velocity for the Caputo model will exceed the Caputo–Fabrizio model as y evolves.  相似文献   
47.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   
48.
A Distributed Virtual Environment (DVE) system offers a computer-generated virtual world in which individuals located at different places in the physical world can interact with one another. In order to achieve real-time response for a large user base, DVE systems need to have a scalable architecture. In this paper, we present the design of a grid-enabled service oriented framework for facilitating the construction of scalable DVE systems on computing grids. A service component called “gamelet” is proposed, whose distinctive mark is its high mobility for supporting dynamic load sharing. We propose a gamelet migration protocol which can ensure the transparency and efficiency of gamelet migration, and an adaptive gamelet load-balancing (AGLB) algorithm for making gamelet redistribution decisions at runtime. The algorithm considers both the synchronization costs of the DVE system and network latencies inherent in the grid nodes. The activities of the users and the heterogeneity of grid resources are also considered in order to carry out load sharing more effectively. We evaluate the performance of the proposed mechanisms through a multiplayer online game prototype implemented using the Globus toolkit. The results show that our approach can achieve faster response times and higher throughputs than some existing approaches. This research is supported in part by the China National Grid project (863 program) and the HKU Foundation Seed Grant 28506002.  相似文献   
49.
埋地油气管道通过永冻土地带时,由于管内介质与周围的冻土发生了热力作用,使冰土解冻,在管道周围形成融化圈。文章分析了永冻土的特点,建立了永冻土地带土壤传热数学模型:融化圈内外传热方程、管道向土壤和土壤表面向大气所放热量的守恒关系、融化圈界面处土壤温度、相变界面处固相变为液相的传热条件。还建立了埋地管道模型,并以穿过永冻土地带土壤的输油管道为例,分析并计算了各种应力的最大值所在的位置和大小,提出了在永冻土地带减小管道热力变形的措施。  相似文献   
50.
为使异构分层无线网络能服务更多的移动用户,提出了一种基于逗留时间的动态流量均衡算法.该算法首先根据用户移动模型计算其在小区内的逗留时间,然后基于小区呼叫到达率和重叠覆盖小区的流量状态来确定一个周期内呼叫转移的数量,最后依据逗留时间门限值将重负载小区中满足条件的呼叫转移到轻负载的重叠覆盖小区中.为降低切换呼叫掉线率,还对异构网间的呼叫切换策略做了改进.仿真实验结果表明,本算法在新呼叫阻塞率和切换呼叫掉线率等性能指标上比传统方法有显著的提高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号