首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51122篇
  免费   6310篇
  国内免费   3143篇
电工技术   9308篇
技术理论   1篇
综合类   5735篇
化学工业   2084篇
金属工艺   2269篇
机械仪表   4721篇
建筑科学   3234篇
矿业工程   1665篇
能源动力   1562篇
轻工业   1218篇
水利工程   1260篇
石油天然气   2500篇
武器工业   614篇
无线电   10419篇
一般工业技术   4359篇
冶金工业   1735篇
原子能技术   494篇
自动化技术   7397篇
  2024年   212篇
  2023年   577篇
  2022年   1094篇
  2021年   1313篇
  2020年   1512篇
  2019年   1234篇
  2018年   1227篇
  2017年   1714篇
  2016年   1948篇
  2015年   2229篇
  2014年   3248篇
  2013年   3061篇
  2012年   4055篇
  2011年   4252篇
  2010年   3354篇
  2009年   3272篇
  2008年   3235篇
  2007年   3953篇
  2006年   3445篇
  2005年   2747篇
  2004年   2192篇
  2003年   1912篇
  2002年   1596篇
  2001年   1343篇
  2000年   1128篇
  1999年   928篇
  1998年   698篇
  1997年   544篇
  1996年   528篇
  1995年   466篇
  1994年   372篇
  1993年   253篇
  1992年   192篇
  1991年   174篇
  1990年   119篇
  1989年   107篇
  1988年   78篇
  1987年   58篇
  1986年   36篇
  1985年   24篇
  1984年   30篇
  1983年   11篇
  1982年   18篇
  1981年   8篇
  1980年   12篇
  1979年   16篇
  1975年   6篇
  1959年   6篇
  1955年   4篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
以SiC陶瓷靶为靶材,Ar和CHF_3为源气体,采用反应磁控溅射法在双面抛光的316L不锈钢基片上制备出了系列Si和F共掺杂的DLC∶F∶Si薄膜。研究了射频输入功率对薄膜的附着力、硬度和表面接触角的影响。结果表明,选取适当的输入功率(180W左右)可以制备出附着力达11N的DLC∶F∶Si薄膜。通过拉曼和红外光谱分析以及样品粗糙度分析,作者提出了输入功率对DLC∶F∶Si薄膜结构和特性调制的机理,即输入功率直接影响SiC靶的溅射产额、空间Ar~+的能量以及CHF_3的分解程度,继而影响空间Si、C、-CF、-CF_2,特别是F~*等基团的能量和浓度,调制薄膜中F含量以及Si-C键含量和C网络的关联度。Si-C、C=C键的增加有助于薄膜附着力的明显改善,F含量的减少则会导致薄膜的疏水性能有所下降。  相似文献   
992.
黄金首饰的表层元素经X射线激发,发射出特征X射线荧光能量光谱线.不同元素的能量光谱线与其含量存在着特定的线性关系.能量色散X射线荧光光谱仪通过采用脉冲高度分析器和配套的相关软件将不同能量的脉冲分开,找出相应的元素,测量相应元素的具体含量值.通过X射线荧光光谱仪对黄金首饰的金含量测出的一系列测量值,依据GB/T18043-2013对黄金首饰样品金含量的不确定度进行计算.对采用的黄金标准物质运用最小二乘法建立数学模型,以标准值为x,3次测量值的平均值为y,找出线性关系方程.通过标准物质的运用,当置信因子k=2时,最终分别计算出18K金样品、足金样品金含量的扩展不确定度.  相似文献   
993.
采用分级淬火实验方法,绘制了2A14铝合金时间-温度-转换率(TTT)曲线,利用XRD、TEM、EDS等观察分析了合金等温过程中的组织变化,结合Avrami方程研究了等温过程中相变动力学。结果表明合金TTT曲线鼻尖温度为350℃,淬火敏感区间为300~400℃。2A14铝合金过饱和固溶体在350℃等温处理时快速分解,第二相脱溶析出速率达到最高。鼻尖温度较大的过饱和度和较高的扩散速率是第二相快速析出和长大的主要原因。2A14铝合金淬火过程中,建议在淬火敏感区间(300~400℃)提高冷却速率抑制第二相析出,在其他温度区间适当降低冷却速率,以获得较高的综合性能。  相似文献   
994.
周健  孟利  杨富尧  吴雪  马光  陈冷 《材料导报》2017,31(14):22-25
对Fe73.5Cu1Nb3Si13.5B9纳米晶铁芯分别进行普通热处理与横磁处理,并检测铁芯经两种热处理后的各项磁性能。获得了各频率下损耗与幅值磁密的关系。结果表明,横磁处理降低损耗效果较明显,该方法在高频电力电子变压器铁芯领域具有潜在应用前景。损耗分离结果表明,横磁处理后,磁滞损耗、涡流损耗、剩余损耗在总损耗中所占比例分别为不变、升高、降低。横磁处理后,磁畴结构改变,以磁矩旋转磁化为主要磁化方式,降低畴壁共振造成的异常损耗是除降低磁滞损耗外,降低总损耗的另一原因。  相似文献   
995.
王凌峰  雷国莉  颜冲 《材料导报》2017,31(Z2):93-98
Mn Zn铁氧体因具有高磁导率、高饱和磁通密度、低损耗而成为高频磁性元件的首选材料,其高频损耗的降低对开关电源的小型化和高效化有重要影响。介绍了高频Mn Zn铁氧体材料的损耗构成和控制机理,总结了国内外高频Mn Zn铁氧体材料研究和开发的发展现状,并对高频Mn Zn铁氧体材料的发展前景进行了展望。  相似文献   
996.
用水溶液电沉积法在碳钢表面电镀铜并进行高温扩散退火,用Den-Broeder法计算铜在碳钢中的扩散系数,研究了铜在碳钢中的扩散行为及其对碳钢耐腐蚀性的影响。结果表明,铜在碳钢中的扩散主要沿晶界进行,铜的扩散抑制了热处理过程中碳钢晶粒的长大。铜在碳钢中的扩散系数为1.11×10-16~3.03×10-11 cm2/s,扩散系数随着退火温度的提高而升高,随着铜浓度的提高而降低。铜在碳钢高温奥氏体区中扩散所需的激活能为126~167 kJ/mol,在高于低温铁素体+奥氏体混合区中激活能为90~108 kJ/mol。通过铜在碳钢中的扩散制备的Cu-Fe梯度材料,具有优良的耐腐蚀性。  相似文献   
997.
提出了一种结合486SX级别的X86微处理器和可编程逻辑器件CPLD两级控制的嵌入式数控系统设计方案,阐述了该系统的硬件接口电路设计;提出了基于改进S形加减速的NURBS曲线直接插补算法,在满足最大弦高误差、最大法向加速度以及最大进给速度要求的情况下,对插补曲线的加速段和减速段进行速度规划;最后采用基于该插补算法的嵌入式数控系统,在半圆形毛坯上进行了五角星NURBS曲线的实际加工,验证了所设计嵌入式数控系统的可行性和有效性,具有一定的工程应用价值。  相似文献   
998.
脉冲宽度调制(PWM)整流电路结构日益复杂,对其可靠运行提出了更高的要求;对局域均值分解(LMD)用于PWM整流电路的故障特征提取进行研究,提出一种基于LMD和加权频带能量法的特征提取新方法;该方法通过逐步抽取调频调幅成分将故障信号在频域上展开,然后基于信号能量的频带分布特点,充分考虑各频带成分与故障的相关性,构造故障特征向量,实现特征提取;最后以PWM整流电路为例进行仿真,相电压380V,仿真时间0.5s,0.1s时注入故障;结果表明,该方法能有效地提取故障信号的特征,并降低特征向量的维数。  相似文献   
999.
针对溢流环换能器液腔振动表现出的优秀低频特性,提出利用溢流环换能器液腔内部声场进行低频校准的校准方法。首先分析了溢流环换能器液腔特性,并在现有刚性罐体的基础上,构造出了一套无须激振台,以溢流环换能器为低频声源,溢流环换能器液腔为两端开口振动液柱的低频比较法校准系统。通过实验测量确定了液柱高度为15 cm处的圆心位置为最佳的比较法测量点,实验测试该点在100~1400 Hz频段的径向声压变化不超过5%。对Ф20 mm球型水听器进行比较法测量,在100~1000 Hz频段的测量结果与标准校准结果最大偏差为0.8 dB,测量不确定度为1 dB。结果表明,以溢流环液腔为基础构造的低频校准系统是可行的。  相似文献   
1000.
由于高频相控阵超声成像系统和多阵元高频超声探头工艺复杂,成本较高、实现难度大,单阵元的机械扫描式高频超声成像探头因其结构简单、实现方便、成本低的特点仍具有较高的理论研究和实际应用价值。但目前机械扫描式成像系统的机械扫描的非均匀性是阻碍其性能进一步提升的主要问题,因此文章设计了一种高精度运动补偿的机械扫描式高频超声成像探头和系统,通过理论计算分析、运动系统结构设计加工、扫描成像系统搭建实现了高精度的扫描成像。最后,线靶和仿体的成像实验结果显示,经运动补偿后,系统能够有效克服传统机械扫描成像的伪影和失真,实现的横向几何位置精度误差为1.34%,纵向几何位置精度误差为1.33%,面积测量精度误差为3.15%,为高精度、高频超声成像算法和系统研究提供了一种有效的手段。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号