首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25959篇
  免费   2586篇
  国内免费   1047篇
电工技术   2984篇
综合类   2987篇
化学工业   2156篇
金属工艺   573篇
机械仪表   843篇
建筑科学   7257篇
矿业工程   990篇
能源动力   968篇
轻工业   2207篇
水利工程   1839篇
石油天然气   1049篇
武器工业   153篇
无线电   1497篇
一般工业技术   1795篇
冶金工业   946篇
原子能技术   107篇
自动化技术   1241篇
  2024年   92篇
  2023年   330篇
  2022年   652篇
  2021年   784篇
  2020年   819篇
  2019年   737篇
  2018年   707篇
  2017年   820篇
  2016年   893篇
  2015年   969篇
  2014年   1612篇
  2013年   1472篇
  2012年   1955篇
  2011年   2079篇
  2010年   1533篇
  2009年   1651篇
  2008年   1542篇
  2007年   1876篇
  2006年   1634篇
  2005年   1339篇
  2004年   1088篇
  2003年   888篇
  2002年   786篇
  2001年   681篇
  2000年   544篇
  1999年   398篇
  1998年   359篇
  1997年   293篇
  1996年   234篇
  1995年   177篇
  1994年   157篇
  1993年   97篇
  1992年   82篇
  1991年   49篇
  1990年   38篇
  1989年   48篇
  1988年   30篇
  1987年   21篇
  1986年   17篇
  1985年   26篇
  1984年   18篇
  1983年   11篇
  1982年   9篇
  1981年   5篇
  1980年   23篇
  1979年   5篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
针对传统拉力型和压力型锚杆存在受力集中、锚固体与岩土体界面黏结强度发挥不充分、抗拔承载力偏低的问题,研发了一种新型拉压复合型锚杆。通过对传统锚杆及拉压复合型锚杆开展模型试验,对比研究了不同锚杆的极限抗拔承载力及其锚固性能。结果表明:拉压复合型锚杆极限抗拔承载力比传统拉力型锚杆大幅提高,拉压长度比为1∶2和2∶1时,分别提高79%和161%,且具有更好的位移延性和抗变形能力;拉压复合型锚杆峰后残余抗拔承载力显著提高,传统拉力型和压力型锚杆稳定残峰比最大值均不超过0.40,锚头相对拔出变形ξs=2.5%时,残峰比平均值分别为0.292和0.259;TC360-12锚杆和TC360-21锚杆稳定残峰比最小值分别不低于0.45和0.60,ξs=2.5%时,残峰比平均值分别为0.545和0.790;拉压长度比为2∶1的拉压复合型锚杆即将破坏时,受拉锚固段和承压锚固段协同承载能力更强,界面黏结强度得到充分发挥,锚杆极限抗拔承载力更高。  相似文献   
982.
为研究圆CFRP-钢复合管约束高强混凝土短柱轴压受力性能,进行了6个CFRP-钢复合管约束高强混凝土(CFRP-steel composite tubed high-strength concrete,C-STC)柱和2个CFRP约束高强混凝土(CFRP-confined high-strength concrete,CC)柱、1个钢管约束高强混凝土(steel tubed high-strength concrete,STC)柱对比试件的轴压试验研究,得到了试件轴向荷载-位移曲线和CFRP及钢管的应变。结果表明:C-STC柱在轴压荷载作用下发生剪切破坏;约束模式对其前期刚度影响较小,相同CFRP层数的C-STC柱和CC柱的荷载-位移曲线第二线性段斜率近似相等;随着CFRP层数增多,短柱承载力和变形能力均能得到提高;钢管应力分析表明,STC柱钢管在峰值荷载附近屈服,C-STC柱钢管约在荷载-位移曲线第二线性段起点处屈服,钢材强度得到充分发挥。结合试验结果对已有文献中约束混凝土强度计算模型进行验证,并给出了建议的C-STC柱承载力计算式。  相似文献   
983.
为研究矩形钢管混凝土翼缘-蜂窝钢腹板H形截面组合短柱(STHCC)的轴压性能,进行了16根STHCC短柱的轴压静力试验。主要研究参数包括约束效应系数、混凝土立方体抗压强度、翼缘钢管腹板厚度和柱长细比。通过轴压试验得到STHCC短柱试件的试验现象和破坏形态、荷载-位移曲线、钢管翼缘和蜂窝钢腹板的荷载-应变曲线,分析了四参数对STHCC短柱轴压承载力的影响规律及受力机理。结果表明:钢管的外表面会产生吕德尔滑移线,所有试件钢管混凝土翼缘均呈剪切型破坏;试件荷载-位移曲线大致可分为弹性、弹塑性、荷载下降和残余变形等四段。随着约束效应系数和蜂窝钢腹板厚度的增加,试件的轴压承载力逐渐提高;随着长细比的增大,试件的轴压承载力却逐渐下降。最后,通过引入组合效应修正系数和综合影响变量,建立了与试验结果吻合较好的STHCC短柱轴压承载力计算式,并给出了该类轴压短柱的设计建议。  相似文献   
984.
为了研究混凝土缺角板的受弯性能,设计制作了角部不同开孔大小的7块钢筋混凝土四边简支板,并进行了静力受弯性能试验。结果表明:缺角板跨中区域钢筋先于板四周区域钢筋屈服,随后屈服范围不断扩展并往四角延伸,最终板顶缺角处沿与板边大致成45°方向的混凝土被压碎;开孔系数(板角所开孔洞边长与跨度的比值)为0.05、0.08、0.10、0.12、0.15和0.20的缺角板极限荷载较矩形板的极限荷载分别降低5.98%、10.35%、21.37%、23.63%、38.50%和49.29%,开裂荷载、屈服荷载基本随开孔系数的增大而降低。根据钢筋混凝土板塑性极限分析的塑性铰线法,对6块不同开孔系数混凝土缺角板提出了4种塑性铰线模式,并利用虚功原理建立缺角板极限荷载计算公式,极限荷载计算值与试验值吻合较好,验证了所提出的塑性铰线模式的合理性,及利用虚功原理建立缺角板极限荷载计算公式的可行性。引入一个与开孔系数相关的系数对塑性铰线模式进行简化,简化公式得出的计算值与试验值吻合较好。  相似文献   
985.
通过对18根圆钢管混凝土短柱进行轴心受压试验,研究初始自应力、钢管壁厚和混凝土强度对其破坏形态、荷载-位移曲线、承载力和变形能力等的影响。试验结果表明:初始自应力对圆钢管自应力自密实混凝土短柱的破坏形态影响不明显,在轴心荷载作用下,所有短柱均为剪切破坏;初始自应力可显著提高圆钢管自应力自密实混凝土短柱的轴压刚度和承载力,其中承载力提高幅度可达27.5%;初始自应力会导致圆钢管自应力自密实混凝土短柱的变形能力明显降低,极限位移和破坏位移大幅减小;钢管壁厚和混凝土强度对圆钢管自应力自密实混凝土短柱承载力的影响幅度受初始自应力的影响。最后,考虑初始自应力的影响,建立圆钢管自应力自密实混凝土短柱轴心受压承载力计算公式,计算结果与试验结果吻合较好。  相似文献   
986.
为改进T形截面钢筋混凝土(RC)梁的受剪加固工艺,提出了一种采用U形预应力钢板箍对T形截面RC梁进行受剪加固的技术。采用简支梁跨中集中力加载的方法,完成了1个足尺未加固RC梁和5个足尺加固RC梁的单调静载试验,研究U形钢板箍间距和预应力水平对加固RC梁受剪性能的影响。通过试验得到了试件的损伤发展过程、破坏形态、荷载-变形曲线以及钢板箍、钢筋和混凝土的应变曲线。研究表明:采用U形预应力钢板箍可有效提高既有T形截面RC梁的斜截面受剪承载力,试件受剪承载力随钢板箍间距的减小而提高,最大提高幅度可达46.1%。当钢板箍间距小于400mm时,加密钢板箍对试件受剪承载力的提高作用逐渐减弱。钢板箍预应力水平在0.35以上时,进一步提高预应力水平对试件受剪承载力无明显影响。提出了U形预应力钢板箍加固T形截面RC梁受剪承载力的计算式,计算结果与试验结果吻合良好,可为既有T形截面RC梁的加固设计提供参考。  相似文献   
987.
《Soils and Foundations》2019,59(6):2206-2219
Soil-cement columns are widely used to improve soft ground, and the bearing capacity of the formed composite ground is a key design parameter. The currently employed design method was developed for composite grounds under rigid footings, whilst the bearing capacity behavior of composite grounds under earth fills with different degrees of stiffness has rarely been investigated. Hence, the present study attempts to fill this gap. In this investigation, 1-g laboratory model tests are conducted to compare the bearing capacity behavior of composite grounds under a rigid footing and under embankment fill, based on which a numerical model that can capture the strain-softening behavior of soil-cement columns is established. The calibrated numerical model is further employed to perform 144 analyses. The results indicate that the failure mode of composite grounds differs for different types of earth fills: soil failure occurs prior to column failure under soft clay and dredged slurry, whereas column failure is the primary failure mode for composite grounds under embankment fill. This difference in failure mode of composite grounds can be explained using soil arching theories. For different failure modes, different bearing capacity efficiency factors should be used in design.  相似文献   
988.
《Soils and Foundations》2019,59(5):1172-1181
This paper presents an innovative type of mountain wind turbine foundation, namely, the cone-shaped hollow flexible reinforced concrete foundation (CHFRF). It consists of a top plate, a base plate and a side wall that are made of reinforced concrete. The cavity of the CHFRF is filled with rubble and soil directly from the excavation for the CHFRF, which means that it can absorb the spoil. A rubber layer is placed beneath the CHFRF to increase the foundation flexibility to resist cyclic and dynamic loadings and to increase the bearing capacity. The great advantages of the CHFRF are the reduction in the usage of concrete and steel and the protection of the vegetation around the wind turbine, compared with conventional mountain wind turbine foundations that are solid structures. It is verified through model tests and a numerical simulation that the CHFRF can provide higher lateral bearing capacity in comparison to the regular circular gravity-based foundation under the same foundation diameter and height, and that the bearing capacity is increased by approximately 33.5% accordingly. It is also found that the rubber layer can effectively reduce the accumulated rotation of the CHFRF under cyclic loading. The accumulated rotation of the CHFRF with a rubber layer having a thickness of 4 mm is decreased by about 50% compared to that of the CHFRF with a rubber layer having a thickness of 2 mm. In addition, the volume of concrete used for the CHFRF is only one-fifth of that used for the circular gravity-based foundation. Therefore, the CHFRF outperforms regular mountain wind turbine foundations.  相似文献   
989.
《Soils and Foundations》2019,59(5):1280-1291
This study focuses on the impact of relative density on the bearing capacity of unsaturated sand using both theoretical predictions and measurements from physical modeling tests. The theoretical predictions incorporate the effective stress, quantified using the suction stress concept and friction angles obtained from direct shear tests on unsaturated sand specimens at different relative densities and degrees of saturation, into conventional bearing capacity equations. The suction stress values inferred from the failure envelopes were found to match well with values predicted from the soil-water retention curves for sands with different relative densities. Moreover, the bearing capacity values measured in physical modeling experiments involving loading of a circular footing atop unsaturated silty sand layers having different initial degrees of saturation matched well with the predicted bearing capacity values from an effective-stress based model. As expected, the bearing capacity was greater for soils with increasing relative density, but an interesting observation is that a transition from general to local shear failure occurred at a certain combination of relative density and degree of saturation. For the silty sand tested, this transition occurred at a relative density of 0% for degrees of saturation between 4 and 16% and at a relative density of 40% for degrees of saturation between 30 and 90%. General shear failure was always observed at relative densities of 70 and 90%.  相似文献   
990.
Based on the limit equilibrium theory, an accurate approach is proposed to solve the ultimate bearing capacity of shallow strip footings under general conditions. The foundation soil is considered to be an ideal elastic-plastic material, which obeys the Mohr-Coulomb yield criterion, and is assumed to be an ideal continuous medium which is isotropic, homogeneous and incompressible or non-expansive. Through analyzing the relative motion and interaction between the footing and soil, the problem of the ultimate bearing capacity of shallow strip footings is divided into two categories. A minimum model with the total vertical ultimate bearing capacity as its objective function is established to solve the ultimate bearing capacity using the slip-line method with no need to make any assumptions on the plastic zone and non-plastic wedge in advance. A convenient and practical simplified method is also proposed for practical engineering purposes. Furthermore, the first category of the problem in the case of the same uniform surcharges on both sides of footings is the focus of the study: the applicable conditions of Terzaghi’s ultimate bearing capacity equation as well as the theoretical exact solutions to its three bearing capacity factors are derived, and a new bearing capacity equation is put forward as a replacement for Terzaghi’s equation. The geometric and mechanical similarity principle is proposed by a dimensionless analysis. The results show that for perfectly smooth footings, the total vertical ultimate bearing capacity obtained by the present method is in good agreement with those by existing methods, whereas the existing methods underestimate the ultimate bearing capacity in the case of perfectly rough footings. The classic Prandtl mechanism is not the plastic failure mechanism of the ultimate bearing capacity problem of perfectly smooth footings on weightless soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号