全文获取类型
收费全文 | 326篇 |
免费 | 174篇 |
国内免费 | 218篇 |
专业分类
电工技术 | 20篇 |
综合类 | 44篇 |
化学工业 | 8篇 |
机械仪表 | 19篇 |
矿业工程 | 1篇 |
能源动力 | 2篇 |
轻工业 | 2篇 |
石油天然气 | 5篇 |
武器工业 | 1篇 |
无线电 | 48篇 |
一般工业技术 | 18篇 |
冶金工业 | 1篇 |
原子能技术 | 1篇 |
自动化技术 | 548篇 |
出版年
2024年 | 9篇 |
2023年 | 26篇 |
2022年 | 44篇 |
2021年 | 50篇 |
2020年 | 50篇 |
2019年 | 42篇 |
2018年 | 38篇 |
2017年 | 28篇 |
2016年 | 32篇 |
2015年 | 43篇 |
2014年 | 41篇 |
2013年 | 59篇 |
2012年 | 65篇 |
2011年 | 62篇 |
2010年 | 47篇 |
2009年 | 30篇 |
2008年 | 25篇 |
2007年 | 13篇 |
2006年 | 4篇 |
2005年 | 7篇 |
2004年 | 1篇 |
2003年 | 1篇 |
2002年 | 1篇 |
排序方式: 共有718条查询结果,搜索用时 9 毫秒
71.
现有基于边信息的半监督维数约减算法大都是直接将保留边信息和数据拓扑结构的目标函数相加,因此数据拓扑结构中的错误连接不会因已知的边信息而得到修正.提出通过边信息传播及修正机制将边信息融入到数据拓扑结构图中的方法,从而在保留边信息的同时保留更为真实的数据拓扑结构信息.实验结果表明本文所提出的算法较之其它算法,对数据降维后用于分类时可取得较高的准确率,且算法对创建的KNN图中的参数K最具鲁棒性. 相似文献
72.
提出了一种没有训练集情况下实现对未标注类别文本文档进行分类的问题。类关联词是与类主体相关、能反映类主体的单词或短语。利用类关联词提供的先验信息,形成文档分类的先验概率,然后组合利用朴素贝叶斯分类器和EM迭代算法,在半监督学习过程中加入分类约束条件,用类关联词来监督构造一个分类器,实现了对完全未标注类别文档的分类。实验结果证明,此方法能够以较高的准确率实现没有训练集情况下的文本分类问题,在类关联词约束下的分类准确率要高于没有约束情况下的分类准确率。 相似文献
73.
在实际应用中, 为分类模型提供大量的人工标签越来越困难, 因此, 近几年基于半监督的图像分类问题获得了越来越多的关注.而大量实验表明, 在生成对抗网络(Generative adversarial network, GANs)的训练过程中, 引入少量的标签数据能获得更好的分类效果, 但在该类模型的框架中并没有考虑用于提取图像特征的结构, 为了进一步利用其模型的学习能力, 本文提出一种新的半监督分类模型.该模型在原生成对抗网络模型中添加了一个编码器结构, 用于直接提取图像特征, 并构造了一种新的半监督训练方式, 获得了突出的分类效果.本模型分别在标准的手写体识别数据库MNIST、街牌号数据库SVHN和自然图像数据库CIFAR-10上完成了数值实验, 并与其他半监督模型进行了对比, 结果表明本文所提模型在使用少量带标数据情况下得到了更高的分类精度. 相似文献
74.
目的 将半监督对抗学习应用于图像语义分割,可以有效减少训练过程中人工生成标记的数量。作为生成器的分割网络的卷积算子只具有局部感受域,因此对于图像不同区域之间的远程依赖关系只能通过多个卷积层或增加卷积核的大小进行建模,但这种做法也同时失去了使用局部卷积结构获得的计算效率。此外,生成对抗网络(generative adversarial network, GAN)中的另一个挑战是判别器的性能控制。在高维空间中,由判别器进行的密度比估计通常是不准确且不稳定的。为此,本文提出面向图像语义分割的半监督对抗学习方法。方法 在生成对抗网络的分割网络中附加两层自注意模块,在空间维度上对语义依赖关系进行建模。自注意模块通过对所有位置的特征进行加权求和,有选择地在每个位置聚合特征。因而能够在像素级正确标记值数据的基础上有效处理输入图像中广泛分离的空间区域之间的关系。同时,为解决提出的半监督对抗学习方法的稳定性问题,在训练过程中将谱归一化应用到对抗网络的判别器中,这种加权归一化方法不仅可以稳定判别器网络的训练,并且不需要对唯一的超参数进行密集调整即可获得满意性能,且实现简单,计算量少,即使在缺乏互补的正则化... 相似文献
75.
基于Hessian半监督特征选择的网络图像标注 总被引:1,自引:0,他引:1
针对半监督特征选择算法进行了研究,采用有标签图像和无标签图像的半监督特征选择方法来提升网络图像标注的性能。基于二阶Hessian能提出一个新的半监督特征选择方法,该方法具有更好的局部拓扑结构保持特性和推断能力,从而能够克服基于图拉普拉斯半监督学习方法的缺点。将所提出的半监督特征选择算法应用到网络图像标注任务中,在两个大规模网络图像数据库上进行了实验,结果表明Hessian半监督特征选择方法优于拉普拉斯半监督特征选择方法,适合大规模网络图像标注。 相似文献
76.
在基于反馈的图像检索中,由于被用户标记为相关和不相关的图像数较少,使得检索问题变成了一个典型的小样本问题.流形可表达数据在低维空间中的内在几何结构,流形正则化的目的是利用这种几何结构来约束解空间,以使最优解能反映数据本身的几何分布.为了解决反馈检索中的小样本问题,本文在流形正则化框架下提出一个新的半监督图像检索算法.在新算法中,流形正则化项只依赖于文中定义的查询子流形,而不依赖于数据集的全局结构.在两个图像集上的实验结果对比表明,本文提出的新算法在检索效果上优于现有的4种state-of-the-art算法. 相似文献
77.
基于流形距离的半监督判别分析 总被引:5,自引:0,他引:5
大量无类别标签的数据具有对分类有用的信息,有效地利用这些信息来提高分类精确度,是半监督分类研究的主要内容.提出了一种基于流形距离的半监督判别分析(semi-supervised discriminant analysis based on manifold distance,简称SSDA)算法,通过定义的流形距离,能够选择位于流形上的数据点的同类近邻点、异类近邻点以及全局近邻点,并依据流形距离定义数据点与其各近邻点之间的相似度,利用这种相似度度量构造算法的目标函数.通过在ORL,YALE人脸数据库上的实验表明,与现有算法相比,数据集通过该算法降维后,能够使基于距离的识别算法具有更高的分类精确度.同时,为了解决非线性降维问题,提出了Kernel SSDA,同样通过实验验证了算法的有效性. 相似文献
78.
79.
针对半监督学习中未标记示例导致性能下降的问题,提出一种新的协同训练算法LDL-tri-training.首先通过最小显著性差异(LSD)假设检验方法使得3个成员分类器两两之间具有显著性差异;然后采用D-S证据理论提高标注的稳定性;最后利用局部异常因子检测算法剔除误标记的噪声样本.实验表明,与其他方法相比,LDL-tri-training算法具有较高的分类精度和稳定性. 相似文献
80.