Recently, it has been reported by our group and others1.2 that loss of curing agent is encountered during the curing of small droplets or thin films of amine cured epoxies. In our earlier study3 results were reported on loss of curing agent in small droplets used in conducting the rnicrobond, single fiber test for determination of interfacial shear strength (ISS). It was reported that use of a volatile curing agent (meta-phenylene diamine (m-PDA) with DGEBA resin) resulted in increasing amounts of curing agent being lost (as measured by T8 of the cured droplets) with decreasing droplet size during the processing procedure. Droplets smaller than 150 micrometers were seen to lose up to 40% of the curing agent leading to alteration of the mechanical properties of the droplet and, therefore, causing measured values of ISS to be exceedingly low. Use of a less volatile curing agent (Jeffamine 700, a polyether diamine, Texaco Specialty Chemicals) in combination with DGEBA resin produced results which indicated that loss of curing agent was not occuring. This study was undertaken to show the relationships between film (or droplet) size and the amount of curing agent lost (during the processing) for three different aminecured epoxy systems. 相似文献
This article considers stabilization of a one‐dimensional Schrödinger equation with variable coefficient and boundary observation which suffers from an arbitrary given time delay. We design an observer and predictor to stabilize the system. The state is estimated in the time span where the observation is available, and also predicted in the time interval where the observation is not available. It is shown that the estimated state feedback stabilizes the system exponentially. A numerical simulation is presented to illustrate the effect of the stabilizing controller. 相似文献