首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25275篇
  免费   2036篇
  国内免费   893篇
电工技术   1064篇
综合类   2296篇
化学工业   2637篇
金属工艺   2741篇
机械仪表   1648篇
建筑科学   3210篇
矿业工程   1215篇
能源动力   1636篇
轻工业   1492篇
水利工程   503篇
石油天然气   1211篇
武器工业   223篇
无线电   1410篇
一般工业技术   2782篇
冶金工业   2668篇
原子能技术   226篇
自动化技术   1242篇
  2024年   68篇
  2023年   257篇
  2022年   610篇
  2021年   703篇
  2020年   707篇
  2019年   556篇
  2018年   490篇
  2017年   662篇
  2016年   720篇
  2015年   776篇
  2014年   1475篇
  2013年   1362篇
  2012年   1845篇
  2011年   2023篇
  2010年   1504篇
  2009年   1545篇
  2008年   1287篇
  2007年   1637篇
  2006年   1499篇
  2005年   1318篇
  2004年   1084篇
  2003年   1032篇
  2002年   901篇
  2001年   731篇
  2000年   640篇
  1999年   554篇
  1998年   430篇
  1997年   359篇
  1996年   284篇
  1995年   282篇
  1994年   202篇
  1993年   157篇
  1992年   129篇
  1991年   89篇
  1990年   74篇
  1989年   65篇
  1988年   34篇
  1987年   23篇
  1986年   17篇
  1985年   14篇
  1984年   15篇
  1983年   16篇
  1982年   2篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1973年   4篇
  1966年   1篇
  1959年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Due to problems such as pores on surface-treated coatings, the corrosion resistance of pure titanium bipolar plates for proton-exchange membrane fuel cells can be further improved by increasing the corrosion resistance of pure titanium by using differential speed-rolling (DSR); however, these materials have not yet reached the standard requirements of bipolar plates (corrosion current density icorr<103 nA·cm?2). In this work, the corrosion resistance of pure titanium was improved by optimizing the DSR process while the strength was maintained. The best corrosion resistance of the DSR pure titanium was achieved when the roller speed ratio was 2, while icorr was 429 nA·cm?2 in a solution of 0.5 M H2SO4 and 2 mg/L HF at room temperature. The formability of the DSR pure titanium for bipolar plates was verified. The optimal holding pressure range was 6.8–7.0 kN.  相似文献   
2.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
3.
The current article focuses on mass and thermal transfer analysis of a two-dimensional immovable combined convective nanofluid flow including motile microorganisms with temperature-dependent viscosity on top of a vertical plate through a porous medium, and a model has been developed to visualize the velocity slip impacts on a nonlinear partial symbiotic flow. The governed equations include all of the above physical conditions, and suitable nondimensional transfigurations are utilized to transfer the governed conservative equations to a nonlinear system of differential equations and obtain numerical solutions by using the Shooting method. Numerical studies have been focusing on the effects of intricate dimensionless parameters, namely, the Casson fluid parameter, Brownian motion parameter, thermophoresis parameter, Peclet number, bioconvection parameter, and Rayleigh number, which have all been studied on various profiles such as momentum, thermal, concentration, and density of microorganisms. The concentration boundary layer thickness and density of microorganisms increased as the Casson fluid parameter, Brownian and thermophoresis parameters increased, whereas the bioconvection parameter, Peclet number, and Rayleigh number increased. The thermal boundary layer thickness, concentration boundary layer thickness, and density of microorganisms all decreased. The velocity distribution decreases as the Peclet number, bioconvection, and thermophoresis parameters rise but rises as the Rayleigh number, Brownian motion parameter, and Casson fluid parameter rise. These are graphed via plots along with divergent fluid parameters.  相似文献   
4.
Three-dimensional Bödewadt flow (fluid rotates at a large enough distance from the stationary plate) of carbon nanomaterial is examined. Single walled and multi walled CNTs are dissolved in water and gasoline oil baseliquids. Darcy-Forchheimer porous medium is considered. Stationary disk is further stretched linearly in radial direction. Heat transfer effect is examined in presence of radiation and convection. Effect of viscous dissipation is accounted. Entropy generation rate is studied. By using adequate transformation (von Kármán relations), the flow field equations (PDEs) are transmitted into ODEs. Solutions to these ODEs are constructed via implementation of shooting method (bvp4c). In addition to Entropy generation rate, Bejan number, heat transfer rate (Nusselt number), skin friction and temperature of fluid are examined through involved physical parameters. Axial component of velocity intensifies with increment in nanoparticles volume fraction and ratio of stretching rate to angular velocity parameter while it decays with higher porosity parameter. Higher nanoparticles volume fraction and porosity parameter lead to decay in radial as well as tangential component of velocity. However it enhances with higher ratio of stretching rate to angular velocity parameter. Temperature of fluid directly varies with higher ratio of stretching rate to angular velocity parameter, radiation parameter, Eckert number, Biot number and nanoparticles volume fraction. Rate of Entropy generation is reduced with higher estimations of porosity parameter, nanoparticles volume fraction and radiation parameter. Skin friction coefficient decays with higher porosity parameter and ratio of stretching rate to angular velocity parameter. Intensification in porosity parameter, nanoparticles volume fraction and Biot number leads to higher Nusselt number. Prominent impact is shown by multiple-walled CNTs with gasoline oil basefluid than single-walled CNTs with water basefluid.  相似文献   
5.
In this article, two novel kinds of focusing elements as reflectors are analyzed and compared. One is the grooved Fresnel zone plate reflector with continuous phase‐correcting. The other called subzone paraboloid reflector, has the profile that consists of a series of paraboloids. Their diffraction efficiencies and bandwidths are described. The two elements still preserve the advantages of Fresnel zone plates, namely, low profile, high efficiency, and simple fabrication. Two dual‐reflector antennas using the proposed focusing elements as the main reflectors are simulated and the results show that these antennas have good radiation performances. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:101–108, 2015.  相似文献   
6.
《Ceramics International》2022,48(13):18658-18666
Samples of the ternary system MgO–Al2O3–SiO2 with stoichiometric composition in relation to α-cordierite (Mg2Al4Si5O18), consisting of 22.2 mol% MgO, 22.2 mol% Al2O3, and 55.6 mol% SiO2, were activated in a low energy mill with a constant speed of 100 rpm, in an aqueous medium. The precursors used were corundum (Al2O3), silica gel HF254 type 60 (SiO2), and periclase (MgO). The objective of the present study was to evaluate the effect of mechanochemical activation on the solid-state synthesis of α-cordierite, using a low energy ball mill. Another objective was to shed light on the effect of mechanochemical activation on the steps of α-cordierite formation. For this end several grinding conditions were evaluated, varying the time and mass ratio of precursors/grinding elements, as well as calcination at different temperatures between 950 °C and 1350 °C for 2 h. The samples were analyzed for the determination of the formed phases by Infrared (IR) and X-ray Diffraction (XRD). The phases identified in uncalcined samples were brucite (Mg(OH)2), forsterite (Mg2SiO4), enstatite (MgSiO3), spinel (MgAl2O3), amorphous silica (SiO2), corundum (α-Al2O3), and zirconia (monoclinic and tetragonal ZrO2). The lowest temperature corresponding to the formation of α-cordierite (α-Mg2Al4Si5O18) was 1150 °C and a considerable amount of this phase (16.2%) was observed at this temperature, for the sample with the higher mechanochemical activation. In a solid-state reaction, α-cordierite is normally obtained at around 1400 °C, therefore, the formation of this phase at 1150 °C confirms that the mechanochemical activation method, using a low-cost ball mill, is efficient in reducing the solid-state reaction temperature.  相似文献   
7.
We deal with the mathematical model of the incremental degradation of the internal coating (e.g. a polymeric material) of a metallic pipe in which a fluid flows relatively fast. The fluid drags solid impurities so that longitudinal scratches, inaccessible to any direct inspection procedure, are produced on the coating. Time evolution of this kind of defects can be reconstructed from the knowledge of a sequence of temperature maps of the external surface. The time-varying orthogonal section of this damaged interface is determined as a function of time and polar angle through the identification of a suitable effective heat transfer coefficient by means of Thin Plate Approximation.  相似文献   
8.
Covalent triazine frameworks (CTFs) have been recently employed for visible light-driven photocatalysis due to their unique optical and electronic properties. However, the usually highly hydrophobic nature of CTFs, which originates from their overall aromatic backbone, leads to limitations of CTFs for applications in aqueous media. In this study, we aim to extend the range of the application media of CTFs and design hybrid material of a CTF and mesoporous silica (SBA-15) for efficient photocatalysis in aqueous medium. A thiophene-containing CTF was directly synthesized in mesopores of SBA-15. Due to the high surface area and the added hydrophilic properties by silica, the hybrid material demonstrated excellent adsorption of organic molecules in water. This leads not only to high photocatalytic performance of the hybrid material for the degradation of organic dyes in water, but also for efficient photocatalysis in solvent-free and solid state. Furthermore, the reusability, stability and easy recovery of the hybrid material offers promising metal-free heterogeneous photocatalyst for broader applications in different reaction media.  相似文献   
9.
The corrosion behavior of synthetic Cu–Sn bronze alloys with six different Sn contents was examined through an electrochemical test and a synthetic test in a simulated corrosive medium. The mechanism of corrosion and the morphology of the corroded surfaces were characterized through field emission scanning electron microscopy equipped with energy-dispersive spectroscopy. At the corrosion potential, the corrosion behavior appears to be determined by the charge transfer step and the diffusion process. It was found that the bronze-IV (Cu–26.8Sn) specimen exhibited the best corrosion resistance, as evidenced by a low corrosion current density and a high impedance. This improvement resulted from an increase in the content of the Cu–Sn solid solution in the alloy, which was conducive to forming a relatively more protective passive film on the surface of the bronze alloy. This finding would be valuable in the anticorrosion protection of archeological artefacts after their excavation.  相似文献   
10.
中国石化北京燕山分公司(简称燕山分公司)为增产高附加值产品、提升效益,对炼油系统进行了流程协同优化。中压加氢裂化装置掺炼催化裂化柴油,由加氢裂化方案改为加氢改质方案运行,将改质柴油送入三号催化裂化装置(简称三催化装置)的提升管进行回炼;同时,将焦化蜡油改入加氢裂化装置进行加工,而蜡油加氢装置不再加工焦化蜡油以改善催化裂化原料。协同优化后,中压加氢改质装置的柴油产品十六烷值提高7个单位;三催化装置的液化气收率提高1.96百分点,汽油收率增加0.88百分点,总液体收率增加2.28百分点;高压加氢裂化装置喷气燃料产品的密度(20 ℃)降低至806 kg/m3,烟点为23.8 mm,尾油BMCI由11.8降低至10.8;蜡油加氢装置精制蜡油的饱和分质量分数提高4.68百分点,芳香分质量分数降低5.96百分点,氮质量分数降低0.06百分点,使催化裂化原料性质得以改善。通过将中压加氢改质装置的喷气燃料馏分抽出送催化裂化装置回炼,与回炼改质柴油相比,催化裂化汽油的研究法辛烷值(RON)增加1.0个单位,改质柴油十六烷值提高4.8个单位。通过全炼油板块系统性优化,燕山分公司车用柴油产品的十六烷值由53.5降低至51.5,解决了质量过剩问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号