首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93344篇
  免费   8751篇
  国内免费   6137篇
电工技术   2917篇
技术理论   1篇
综合类   5728篇
化学工业   23433篇
金属工艺   7482篇
机械仪表   4789篇
建筑科学   3353篇
矿业工程   2371篇
能源动力   2251篇
轻工业   5638篇
水利工程   1329篇
石油天然气   2986篇
武器工业   702篇
无线电   11435篇
一般工业技术   15903篇
冶金工业   3439篇
原子能技术   1165篇
自动化技术   13310篇
  2024年   342篇
  2023年   1800篇
  2022年   2850篇
  2021年   3454篇
  2020年   3060篇
  2019年   2817篇
  2018年   2501篇
  2017年   3063篇
  2016年   3398篇
  2015年   3568篇
  2014年   4951篇
  2013年   5245篇
  2012年   5803篇
  2011年   7724篇
  2010年   5789篇
  2009年   6493篇
  2008年   5561篇
  2007年   6238篇
  2006年   5447篇
  2005年   4856篇
  2004年   3994篇
  2003年   3623篇
  2002年   3090篇
  2001年   2045篇
  2000年   1958篇
  1999年   1579篇
  1998年   1242篇
  1997年   988篇
  1996年   928篇
  1995年   707篇
  1994年   680篇
  1993年   503篇
  1992年   387篇
  1991年   327篇
  1990年   231篇
  1989年   208篇
  1988年   132篇
  1987年   110篇
  1986年   124篇
  1985年   70篇
  1984年   45篇
  1983年   47篇
  1982年   53篇
  1981年   31篇
  1980年   42篇
  1979年   32篇
  1978年   12篇
  1977年   18篇
  1976年   17篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
为解决共享交通下的共乘用户群体发现效率低、准确率不高问题,依据R-树原理建立GeoOD-Tree索引,并在此基础上提出以最大化共乘率为目标的群体发现策略。首先,对原始时空轨迹数据进行特征提取与标定处理,挖掘有效出行起讫点(OD)轨迹;其次,针对用户起讫点轨迹的特征,建立GeoOD-Tree索引进行有效的存储管理;最后,给出以最大化共乘行程为目标的群体发现模型,并运用K最近邻(KNN)查询对搜索空间剪枝压缩,提高群体发现效率。采用西安市近12000辆出租车营运轨迹数据,选取动态时间规整(DTW)等典型算法与所提算法在查询效率与准确率上进行性能对比分析。与DTW算法相比,所提算法的准确率提高了10.12%,查询效率提高了约15倍。实验结果表明提出的群体发现策略能有效提高共乘用户群体发现的准确率和效率,可有效提升共乘出行方式的出行率。  相似文献   
52.
He-3 is generally recognized for its ability to provide more excellent thermophysical performance than He-4, especially in the 4 K temperature range. However, this was not always the case in our preliminary experiments on a three-stage Stirling-type pulse tube cryocooler (SPTC). Our ongoing studies, as reported in this paper, demonstrate that the different working fluids also affect the performance through their phase shifting capability. This feature has been passed over in large part by researchers considering refrigerant substitution. Unlike previous theoretical analyses that focus primarily on regenerator losses, this report investigates the effects of the working fluid on the phase angle at the cold end in order to quantitatively reveal the relationship between the lowest attainable temperature and the cooling capacity. The analysis agrees well with our experimental results on a three-stage SPTC. While running with the operating parameters optimized for He-3, the lowest temperature of the SPTC decreased from 5.4 K down to 4.03 K. This is the lowest refrigeration temperature ever achieved with a three-stage SPTC.  相似文献   
53.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
54.
In this work was investigated the effect of the addition of barium titanate (BaTiO3) on electrical properties of two chemically recyclable thermosets, polyhemiaminal (PHA) and polyhexahydro‐s‐triazine (PHT), both fabricated from 4,4′‐oxydianiline (ODA), an ether derivative of aniline and paraformaldehyde. Thermal and mechanical properties as well as chemical recyclability of the two polymers and their nanocomposites/nanodielectrics were also investigated. In addition, a quantitative analysis was conducted of the nanoparticle dispersion in the PHA‐/PHT‐based BaTiO3‐containing nanocomposites using transmission electron microscopy imaging and the nearest‐neighbor distance index and this index was used to analyze the investigated properties in connection with the proper mechanisms. Regarding the electrical properties for both neat polymers, conductivity values of the order of 10?8 S m?1 at 100 Hz were observed and dielectric constant values close to 2.80 for both polymers at 1 kHz. The addition of 0.5 wt% of BaTiO3 ferroelectric nanoparticles increased by about 44% the dielectric constant (1 kHz) and conductivity (102 Hz) of the PHA‐based nanocomposite. PHA and PHT exhibited glass transition temperature (Tg) values in the range 125–180 °C. An increase of 7 °C in Tg was observed after the incorporation of 0.5 wt% of BaTiO3 into PHA. Concerning the mechanical properties, values in the range 4.00–4.45 GPa for reduced modulus and 0.30–0.43 GPa for nanohardness for PHA and PHT polymers were observed. Independently of filler content or polymer matrix, both mechanical properties were enhanced after the addition of BaTiO3. The chemical recycling of PHA/PHT and all nanocomposites in the initial ODA reagent after sulfuric acid treatment was successfully characterized using the NMR and Fourier transform infrared spectroscopic techniques. © 2018 Society of Chemical Industry  相似文献   
55.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
56.
Hyperbolic phonon polaritons (HPhPs) in orthorhombic-phase molybdenum trioxide (α-MoO3) show in-plane hyperbolicity, great wavelength compression, and ultralong lifetime, therefore holding great potential in nanophotonic applications. However, its polaritonic response in the far-infrared (FIR) range remains unexplored due to challenges in experimental characterization. Here, monochromated electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is used to probe HPhPs in α-MoO3 in both mid-infrared (MIR) and FIR frequencies and correlate their behaviors with microstructures and orientations. It is found that low structural symmetry leads to various phonon modes and multiple Reststrahlen bands (RBs) over a broad spectral range (over 70 meV) and in different directions (55–63 meV and 119–125 meV along the b-axis, 68–106 meV along the c-axis, and 101–121 meV along the a-axis). These HPhPs can be selectively excited by controlling the direction of swift electrons. These findings provide new opportunities in nanophotonic and optoelectronic applications, such as directed light propagation, hyperlenses, and heat transfer.  相似文献   
57.
The structural changes induced in a CoCrCuFeNi multicomponent nano-crystalline high-entropy alloy (HEA) under fast electron irradiation were investigated by in-situ transmission electron microscopy (TEM) using a high voltage electron microscope (HVEM). A fine-grained face centered cubic (fcc) single phase was obtained in the sputtered specimens. The fcc solid solution showed high phase stability against irradiation over a wide temperature range from 298 to 773 K, and remained as the main constituent phase even when the samples were irradiated up to 40 displacement per atom (dpa). Moreover, the irradiation did not seem to induce grain coarsening. This is the first report on the irradiation damage in 5-component HEA under MeV electron irradiation.  相似文献   
58.
Electrical resistivity, Seebeck coefficient, specific heat and thermal conductivity measurements on the Ti50−xNi50+x (x = 0.0–1.6 at.%) shape memory alloys are performed to investigate their thermal and transport properties. In this study, anomalous features are observed in both cooling and heating cycles in all measured physical properties of the slightly Ni-rich TiNi alloys (x ≤ 1.0), corresponds to the transformation between the B19′ martensite and B2 austenite phases. Besides, the transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition is also found to diminish slowly with the addition of excess Ni, as revealed by specific heat measurements. While the signature of martensitic transformation vanishes for the Ni-rich TiNi alloys with x ≥ 1.3, the characteristics of strain glass transition start to appear. The Seebeck coefficients of these TiNi alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. From the high-temperature Seebeck coefficients, the estimated value of Fermi energy ranges from ∼1.5 eV (Ti48.4Ni51.6) to ∼2.1 eV (Ti50Ni50), indicating the metallic nature of these alloys. In addition, the thermal conductivity of the slightly Ni-rich TiNi alloys with x ≤ 1.0 shows a distinct anomalous feature at the B19′ → B2 transition, likely due to the variation in lattice thermal conductivity.  相似文献   
59.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   
60.
Magnetic MnFe2O4 nanopowders were synthesized by an original solvothermal method in the absence and in the presence of tetra-n-butylammonium bromide (TBAB) and Tween 80 (TW) as surfactants. Manganese ferrite/polyaniline (PANI) hybrid materials were synthesized by in situ polymerization of aniline on the surface of MnFe2O4 using ammonium persulfate as oxidant. The purpose of the study was to investigate the influence of the two surfactants on the properties of the MnFe2O4 powders and of their composites with PANI. The specific surface area, the cumulative surface area of pores and the cumulative volume of pores are influenced by the nature of surfactant in case of MnFe2O4 powders and are higher by comparison to those of the MnFe2O4/PANI hybrid materials. The values of saturation magnetization in case of MnFe2O4 powders are higher than those of the hybrid materials and are not influenced by the surfactant nature. These features revealed that MnFe2O4 powders can be efficiently used as adsorbents for the purification of wastewaters. The values of the electrical conductivity of the composites exhibit a significant increase in comparison to the MnFe2O4 powders and depend on the surfactant nature. The highest value of electrical conductivity was achieved by the composite obtained using Tween 80 as surfactant (σDC = 54.5·10?5S?m?1) which was close to that of PANI (σDC = 61.2·10?5 S?m?1). The fact that the magnetic and electric properties of the synthesized MnFe2O4/PANI composites can be changed by design, demonstrate the high potential of these materials to be used in magneto-electric applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号