首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   4篇
  国内免费   1篇
综合类   2篇
化学工业   29篇
建筑科学   6篇
矿业工程   1篇
能源动力   67篇
轻工业   6篇
水利工程   2篇
一般工业技术   8篇
冶金工业   3篇
  2024年   1篇
  2023年   7篇
  2022年   12篇
  2021年   14篇
  2020年   15篇
  2019年   10篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   6篇
  2013年   7篇
  2012年   1篇
  2011年   8篇
  2009年   1篇
  2008年   4篇
  2004年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
81.
A comprehensive particle scale model for pyrolysis of biomass has been developed by coupling the reaction mechanisms and transport phenomena. The model, which also accounts for the combined effect of various parameters such as particle shrinkage and drying, was validated using available experimental data from the literature. The validated model was then used to study the effect of operating temperature and biomass particle size, both of which strongly influenced the rate of biomass conversion. For example, for particle sizes less than 1 mm, a uniform temperature throughout the particle was predicted, thus leading to higher conversion rates in comparison to those in the larger particles. On the other hand, any increase in moisture content led to considerable decrease in the rate of biomass conversion. For the operating conditions considered in this study, the volumetric particle shrinkage also increased the decomposition of biomass to end products.  相似文献   
82.
Economic tradeoff between biochar and bio-oil production via pyrolysis   总被引:1,自引:0,他引:1  
This paper examines some of the economic tradeoffs in the joint production of biochar and bio-oil from cellulosic biomass. The pyrolysis process can be performed at different final temperatures, and with different heating rates. While most carbonization technologies operating at low heating rates (large biomass particles) result in higher yields of charcoal, fast pyrolysis (which processes small biomass particles) is the preferred technology to produce bio-oils. Varying operational and design parameters can change the relative quantity and quality of biochar and bio-oil produced for a given feedstock. These changes in quantity and quality of both products affect the potential revenue from their production and sale. We estimate quadratic production functions for biochar and bio-oil. The results are then used to calculate a product transformation curve that characterizes the yields of bio-oil and biochar that can be produced for a given amount of feedstock, movement along the curve corresponds to changes in temperatures, and it can be used to infer optimal pyrolysis temperature settings for a given ratio of biochar and bio-oil prices.  相似文献   
83.
Paper mill sludge (PMS) is a residual biomass that is generated at paper mills in large quantities. Currently, PMS is commonly disposed in landfills, which causes environmental issues through chemical leaching and greenhouse gas production. In this research, we are exploring the potential of fast pyrolysis process for converting PMS into useful bio-oil and biochar products. We demonstrate that by subjecting PMS to a combination of acid hydrolysis and torrefaction pre-treatment processes it is possible to alter the physicochemical properties and composition of the feedstock material. Fast pyrolysis of pretreated PMS produced bio-oil with significantly higher selectivity to levoglucosenone and significantly reduced the amount of ketone, aldehyde, and organic acid components. Pretreatment of PMS with combined 4% mass fraction phosphoric acid hydrolysis and 220 °C torrefaction processed prior to fast pyrolysis resulted in a 17 times increase of relative selectivity towards levoglucosenone in bio-oil product along with a reduction of acids, ketones, and aldehydes combined from 21 % to 11 %. Biochar, produced in higher yield, has characteristics that potentially make the solid byproduct ideal for soil amendment agent or sorbent material. This work reveals a promising process system to convert PMS waste into useful bio-based products. More in-depth research is required to gather more data information for assessing the economic and sustainability aspects of the process.  相似文献   
84.
Challenges in removal of contaminants, especially tars, from biomass-generated producer gas continue to hinder commercialization efforts in biomass gasification. The objectives of this study were to synthesize catalysts made from biochar, a byproduct of biomass gasification and to evaluate their performance for tar removal. The three catalysts selected for this study were original biochar, activated carbon, and acidic surface activated carbon derived from biochar. Experiments were carried out in a fixed bed tubular catalytic reactor at temperatures of 700 and 800 °C using toluene as a model tar compound to measure effectiveness of the catalysts to remove tar. Steam was supplied to promote reforming reactions of tar. Results showed that all three catalysts were effective in toluene removal with removal efficiency of 69–92%. Activated carbon catalysts resulted in higher toluene removal because of their higher surface area (∼900 m2/g compared to less than 10 m2/g of biochar), larger pore diameter (19 A° compared to 15.5 A° of biochar) and larger pore volume (0.44 cc/g compared to 0.085 cc/g of biochar). An increase in reactor temperature from 700 to 800 °C resulted in 3–10% increase in toluene removal efficiency. Activated carbons had higher toluene removal efficiency compared to biochar catalysts.  相似文献   
85.
A promising biochar/ZnFe2O4 (BZF) composite has been synthesized to improve the efficiency of visible-light-driven H2 evolution via a simple microwave hydrothermal method. The materials were investigated through diverse characterization means including XRD, FTIR, SEM, BET, XPS, VSM, UV–vis/DRS, PL, EIS. Different ratios of BZF composites expressed enhanced photocatalytic H2 evolution performance over pure ZnFe2O4. Especially, biochar/ZnFe2O4 catalysts with 5:1 mass ratio (BZF-5) attained the optimal H2 evolution rate, which is around 6 times higher than that of pure ZnFe2O4. Biochar acts as an electron mediator can effectively promote the separation of electron-hole pairs to enhance the rate of photocatalytic hydrogen evolution. Moreover, Eosin Y, photocatalyst and TEOA have synergistic effects accounted for enhanced photocatalytic performance in reaction system. Three cyclic runs for the photocatalytic H2 evolution on BZF-5 sample illustrated its good stability and sustainable reusability.  相似文献   
86.
Aiming investigated the pyrolysis of the agricultural waste known as cassava stump, the portion of the plant to which the tuberous roots and aerial parts of the plant are attached, this study had as objective to produce biochars from cassava stump by conducting vacuum pyrolysis at 400, 500, or 600?°C. The biochars were characterized by proximate analysis, thermogravimetric analysis, Fourier-transform infrared absorption spectroscopy, X-ray diffraction, scanning electron microscopy, and nitrogen adsorption. Adsorption affinity tests were performed with four different dyes: methylene blue, basic fuchsin, acid fuchsin, and alizarin. Biochar obtained at 500?°C, heating rate of 20?°C.min?1, and 90?min of residence at the final temperature, had 22% higher fixed carbon content as compared to the other biochars and 3.16 times greater fixed carbon content than the original cassava stump. This biochar showed the best adsorption capacity (0.0679?mmol/g) and percentage of removal (87.6%) of methylene blue dye from aqueous solution. The material characterization reveals that biochars from Manihot esculenta Crantz stump may have potential application in carbon sequestering. Besides that, these biochars could be applied with efficiency as adsorbent of dyes.  相似文献   
87.
Porous carbons as electrode materials are highly desired for use in energy storage/conversion devices. Herein, the development of a series of highly porous nitrogen and oxygen co-doped carbons by using pea protein (PP) as a cost-effective, sustainable and nitrogen-rich precursor is reported. Pea protein derived carbons (PPDCs) have been prepared by applying a straightforward two-step synthetic route including pyrolysis and KOH-chemical activation. Potassium hydroxide has been employed to generate porosity and introduce oxygen functionalities into the framework of carbon. The heteroatoms doping content and porosity parameters have been tuned by varying the synthesis temperature and activator to precursor ratio. The carbon obtained with optimal synthetic parameters (T = 800 °C and KOH/Precursor = 4) featured the highest surface area, the maximal pore volume and N-/O doping level of 3500 m2 g?1, 1.76 cm3 g?1, and 2.5-/17.9 at%, respectively. PPDC-4-800 as supercapacitor presented a very high specific capacitance (413 F g?1 at 1.0 A g?1 in 1 M KOH), remarkable cycling stability (92% retention after 20000 cycles) and outstanding rate capability (210 F g?1 at 30 A g?1). The cooperative effects of the well-developed porous architecture and surface modification of PPDCs resulted in enhanced electrochemical performances, suggesting their potential application for energy storage devices.  相似文献   
88.
This study investigated the catalytic behavior of two different types of materials: (i) algal biochar and (ii) 15 wt% Ni impregnated on SBA-15 support (Ni/SBA-15), in the thermochemical decomposition of Venice lagoon brown marine algae (Sargassum). First, non-catalytic pyrolysis tests were conducted in a temperature range of 400–800 °C in a dual-bed slow pyrolysis reactor. The optimum temperature for maximized liquid yield was at the temperature of 700 °C. Biochar catalyst exhibited excellent catalytic activity toward producing aromatic compounds via Diels-Alder-type reactions. However, Ni/SBA-15, because of interconnected pores provided easy passage for reactant and product during the catalytic pyrolysis process and resulted in an improvement in total gas yield (25.87 mmol/g Sargassum) and hydrogen-rich gas production (8.54 mmol/g Sargassum). The catalytic performances of both biochar and Ni/SBA-15 catalysts were compared to biochar-based catalysts derived from red and green macroalgae. High specific surface area, large pore volume, highly ordered pore structure, and narrow pore size distribution make SBA-15 a promising catalyst support in pyrolysis of biomass.  相似文献   
89.
Electrically conductive carbon powders are commonly used as filler materials in polymers to create electrically semi-conductive composite materials for use in battery electrodes and anti-static applications. Current methods for characterizing the conductivity of these powders use two pistons to compress the powders. Two-piston methods are known to underestimate conductivity. This study develops a guard-electrode method based on ASTM D257 to better characterize the bulk conductivity and impedance spectra of electrically conductive powders. The conductivity and impedance spectra of a highly conductive powder (copper powder) and a low conductivity powder (cellulose) were used to bound the conductivity of carbon black, graphite, and biochar. Powders were measured through a full range of compression with both the two-piston and the guard-electrode method. In all cases, measurements using the guard-electrode method have higher conductivity and lower impedance than the same powders measured using the two-piston method. The grain conductivity of the particles is obtained through fitting the relationship of conductivity versus packing fraction using the GEM equation. The guard-electrode method is shown to be more similar to established conductivity values as measured via a four-probe technique for copper and graphite then the two-piston method.  相似文献   
90.
In order to obtain the catalytic effects of K and Ca species on the biochar structure during in-situ tar H2O reforming over nascent biochar, the H-form/K-loaded/Ca-loaded rice husks were studied for the in-situ tar reforming in the two-stage fluidized bed/fixed bed reactor. The specific reaction pathway of K and Ca for tar reforming was investigated, associated with the changes of biochar structures, through the methods of ICP-AES, Raman, FTIR and XPS. The results indicate that the in-situ volatiles (tar and free radicals) H2O reforming over nascent biochar could be conducted by three possible ways: occupying reactive sites on biochar, changing biochar structures and/or changing the total/surface concentration of AAEM species. The mechanisms of in-situ tar H2O reforming by K and Ca species were different: tar cracking into low-quality tar or small-molecule gas may be catalyzed by K, while the combination of tar with biochar would be promoted by Ca. The volatilizations of K and Ca with the presence of volatiles were to a large extent in accordance with their valences (monovalent K+ and divalent Ca2+) and their boiling points. The subsequent transformation from the small aromatic ring systems to the larger ones occurred due to the volatile-biochar interaction. During the in-situ tar H2O reforming over biochar, K and Ca act as the active sites on biochar surface to promote the increase of active intermediates (CO bonds and COK/Ca), which promotes the tar-biochar interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号