首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2409篇
  免费   26篇
  国内免费   11篇
电工技术   9篇
综合类   17篇
化学工业   648篇
金属工艺   9篇
机械仪表   7篇
建筑科学   84篇
矿业工程   6篇
能源动力   1400篇
轻工业   54篇
水利工程   15篇
石油天然气   8篇
无线电   2篇
一般工业技术   47篇
冶金工业   36篇
原子能技术   5篇
自动化技术   99篇
  2024年   1篇
  2023年   32篇
  2022年   73篇
  2021年   76篇
  2020年   105篇
  2019年   117篇
  2018年   89篇
  2017年   49篇
  2016年   156篇
  2015年   115篇
  2014年   130篇
  2013年   143篇
  2012年   74篇
  2011年   323篇
  2010年   180篇
  2009年   173篇
  2008年   127篇
  2007年   113篇
  2006年   74篇
  2005年   55篇
  2004年   44篇
  2003年   44篇
  2002年   30篇
  2001年   14篇
  2000年   21篇
  1999年   13篇
  1998年   16篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   14篇
  1993年   2篇
  1992年   12篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有2446条查询结果,搜索用时 15 毫秒
51.
Small-scale biomass boiler development is often based on empirical methods resulting in high efforts for experimental test runs using several prototypes. CFD simulations are able to reduce both, development time and efforts for tests and prototypes, supposing that the models reliability is high and its computational effort is low. Extreme air-staging with an initial gasification stage and a subsequent fuel gas burnout in a downstream gas-burner is a promising new method to reduce NOX and PM emissions in small-scale biomass boilers. Gasification conditions in the first combustion stage lead to high accumulation of gaseous tars in the fuel gas contributing challenges for combustion simulation because common CFD models use 2 or 3-step global methane reaction schemes to describe combustion chemistry. In this work, the performance of a computationally inexpensive steady flamelet model (SFM) together with a detailed reaction mechanism (18 species, 42 reactions) was scrutinized. In order to evaluate the performance of the SFM, two furnace designs were examined, running under different load shifts and various excess air ratio. Comparative numerical simulations were performed with classical species transport models. The numerical simulations and the experiments for validation were carried out on a wood-chip boiler with a heat output of 40 kW. Results show that flue gas temperature, flame shape, main flue gas concentrations and NOX can be quantitatively predicted. The SFM shows also reasonable good predictions for CO variation trends. With the present approach, calculation time can be reduced by 90% compared to commonly used models (EDC). The SFM provides sufficiently accurate results within 24 h using a standard processor consisting of six cores (mesh size 1.5 million elements). Thus, the presented model is a perfectly suitable method for applied science and industrial research.  相似文献   
52.
Direct utilisation of biomass for energy application is less profound due to the problems of low calorific value, high water content, and low grindability of biomass. For this reason, pre-heating treatment, sometimes called torrefaction, is necessary to improve the physical properties of biomass similar to ‘coal-like’ material. Unfortunately, only few comprehensive but simple theoretical models focused on hard-wood biomass were available to describe the torrefaction process. In this discussion, a simple proposed torrefaction model was developed and reported. The model has ability to estimate the yield of product mass and energy after the torrefaction process and determine the optimum conditions.  相似文献   
53.
As an industrial pollutant, tar derived from biomass gasification is used as the precursor for fabricating a novel carbon-metal hydroxides composite electrode. A slurry (the mixture of tar, KOH and melamine) is daubed uniformly onto the nickel foam, which is directly carbonized to form NPC@LDH electrode material. This electrode is further coated with NiCo-LDH nanosheets using an electrodeposition method to form NF@NPC@LDH. The newly made NF@NPC@LDH electrode exhibits a high specific capacity of 9.6 F cm−2 at a current density of 2 mA cm−2 and good rate performance (55.3% retention). Furthermore, a hybrid NF@NPC@LDH//NF@PC all-solid-state supercapacitor is fabricated, and the device exhibits high energy density of 1.28 mWh cm−3 at a power density of 8.04 mW cm−3, low resistance and good cycling stability.  相似文献   
54.
Porous carbon derived from rice husk has been prepared and subsequently be used as carbon support to in situ fabricate hierarchical MoS2 microspheres. The X-ray powder diffraction characterization indicates that the graphite structure exists in the obtained rice husk carbon which is beneficial for the enhancement of the charge transfer speed. MoS2 microspheres on the surface of rice husk carbon present hierarchical structure with nanosheet subunit, and exhibits looser morphology than the individual MoS2 due to the lattice shrinkage. Based on the synergistic effect of MoS2 and the rice husk carbon, MoS2@RHC composite displays excellent lithium storage performance. The charge-transfer resistance of the MoS2@RHC composite is great lower than that of the individual materials. This result leads to the superior cycling stability and rate capability based on the favorable interface kinetics with faster lithium ion diffusion. The lithium charge-discharge mechanism of the composite is also further investigated. The log (peak current) versus log (scan rate) plot reveals that the current is predominantly controlled by the diffusion kinetics during the lithiation and delithiation process.  相似文献   
55.
This work aimed to investigate the effects of supplementing two distinct types of ash, namely fly ash (FA) and bottom ash (BA) on the dark fermentation (DF) process of food waste (FW) for H2 production. Both types of biomass combustion ash (BCA) were collected in an industrial bubbling fluidized bed combustor, using residual forest biomass as fuel. Results indicated that adding BCA at different doses of 1, 2 and 4 g/L could effectively enhance H2 generation when compared to the control test without BCA addition. This stimulatory effect was attributed to the crucial role of metal elements released from BCA such as sodium, potassium, calcium, magnesium, and iron in the provision of buffering capacity and inorganic nutrients for the functioning of hydrogen-forming bacteria. The highest H2 yield of 169 mL per g of volatile solids (VS) were obtained by adding only a small amount of BA (1 g/L) to the reactive system, representing a significant increment of 1070% compared to the control reactor. Furthermore, a significant decrease in the bacterial lag phase time from 26 h to 2.7 h, as well as about a 12-fold increase in the energy recovery as H2 gas was observed at BA dosage of 1 g/L in comparison with the control reactor. Overall, this study suggested that a proper addition of BCA could promote the DF process of FW and enhance biohydrogen production.  相似文献   
56.
A system based a fluidized bed gasifier with steam as a gasifying agent is investigated in details. Comparing the synthesis of gas compositions with experimental data available in the literature is used to validate the model. The synthesis of gas composition and efficiencies of the system is investigated respect to different biomasses considered as gasification fuels. The results indicate that the molar fractions of hydrogen and carbon dioxide are increased and the molar fraction of carbon monoxide is reduced with steam to biomass ratio (STBR). The hydrogen and cold gas efficiencies are improved with decreasing STBR. Hydrogen, cold gas, and exergy efficiencies are enhanced with temperature. The results illuminate that pine sawdust and straw have the highest hydrogen production and legume straw produces the lowest CO molar fraction. Straw has the highest hydrogen efficiency, eucalyptus and straw have the highest cold gas efficiency, and eucalyptus has the highest exergy efficiency. A systematical analytical hierarchy process (AHP)/technique for order preferences by similarity to ideal solution (TOPSIS) couple method are utilized to select the best alternative. The results illuminate that eucalyptus, straw, and pine sawdust are the best candidates, respectively as gasification fuel based on the considered criteria.  相似文献   
57.
《能源学会志》2019,92(4):1137-1148
Chemical looping gasification (CLG) is regarded as an innovative and promising technology for producing syngas. In this work, CLG of straw was conducted in a fixed bed reactor with Fe2O3 as the oxygen carrier, whose results led to conclusions that Fe2O3, the oxygen carrier, proved advantageous to the secondary gasification reaction and the formation of CO and CO2. It was also found that CO was further oxidized to CO2 at high Fe2O3/C molar ratio, which resulted in a decreased gasification efficiency and low heat value of syngas. Therefore, a conclusion was drawn that the most optimized Fe2O3/C molar ratio was 0.2. In addition, the alkali metals in the biomass evaporated as chlorine salts into gas phase and retained as alkali metal oxide at high temperature, resulting in coking, slagging and heating surface corrosion. In the mean time, the oxygen carrier mainly converted to Fe and sintering phenomenon was serious at high temperature despite the fact that high temperature promoted gas yield, carbon conversion efficiency and gasification efficiency. Therefore, the most optimized temperature was set to 800 °C in order to maximize gas yield and gasification efficiency.  相似文献   
58.
《能源学会志》2019,92(6):1977-1986
Energy can be extracted from biomass through gasification. The gasification process is influenced by the physico-chemical nature of the biomass selected for gasification. Ash content and composition of the biomasses are likely to affect the gasification process. Clinker formation in the reactor bed caused by melting and agglomeration of ashes will affect the gasification process in fluidised bed gasifiers. The agglomeration tendency of the biomass is examined by carrying out the Energy Dispersive X-ray Spectroscopy analysis on biomass ash to identify the presence of elements like potassium and sodium responsible for agglomeration. Experimental investigations on the gasification of coffee husk revealed that coffee husk is prone to agglomeration even though the hydrogen yield is more. However, gasification of saw dust is not vulnerable to agglomeration. Co-gasification of coffee husk with sawdust (which is less prone to agglomeration) is investigated experimentally.  相似文献   
59.
Agroindustrial by-products are an abundant source of biocompounds that contain valuable nutrients, which are not exploited. In this work, lignocellulosic wastes (LW) were used in submerged fermentation (SmF) and solid-state fermentation (SSF) by Aspergillus niger NRRL3 to obtain valuable enzymes required in industries. SmF using soya bean hulls (SH), wheat bran (WB) and a by-product of wheat flour (F) produced the highest activities of endo-1,4-β-xylanase (Xyl) and endo-1,4-β-D-glucanase (EG) being at least 3 times lower than those obtained by SSF. The highest ratio of Xyl to EG was obtained in SmF with F. Xyl obtained by SmF with WB was the most thermally resistant. The enzymatic extract obtained in SmF using SH presented a high power of saccharification. The production of enzymes for further application such as bioethanol generation process revalue these LW and can help offset growing environmental problems.  相似文献   
60.
The adsorption of humic acid and fulvic acid onto Bacillus subtilis cells and activated sludge biomass was studied as a function of pH and incubation time. The adsorption of humic and fulvic acids was strongly pH-dependent and followed the same trend on both surfaces, increasing in a sigmoidal way with decreasing pH over the 2-10 pH range. This behaviour is explained in terms of hydrophobic interactions between the uncharged biomass and the uncharged humic and fulvic acids. In contrast, the adsorption of phenol onto B. subtilis cells and activated sludge biomass showed in both cases an optimum pH at around 7.0. This optimum value may be interpreted in terms of a combination of hydrophobic interactions and hydrogen bonds between undissociated phenol and polar groups on the cell walls. Kinetic studies on the adsorption of humic acid, fulvic acid and phenol onto B. subtilis cells and sludge biomass pointed to a rapid uptake of the substances, with an equilibrium time of about 30 min. In all cases, the kinetic curves were acceptably fitted by non-linear regression to an exponential function, suggesting a first-order kinetic phenomenon. The specific adsorption values collected at optimum pH revealed that with the materials used in this work both B. subtilis and activated sludge follow the same adsorption trend: humic>fulvic>phenol. The lower adsorption of fulvic acid as compared with humic acid may be explained in terms of its lower hydrophobicity rather than its lower molecular size. On comparing the specific adsorption values of activated sludge versus B. subtilis, similar but lower figures were found for the three organic compounds studied. This similar behaviour suggests that both types of biomass base their adsorption capacity on the general characteristics of the bacterial cell wall, and the lower adsorption by the sludge would be due to a lower specific area due to clustering of the cells. This is remarkable, since sludge is a heterogeneous and cheap material in comparison with cultured bacterial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号