首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   5篇
  国内免费   1篇
电工技术   10篇
综合类   7篇
化学工业   333篇
机械仪表   3篇
建筑科学   9篇
矿业工程   1篇
能源动力   452篇
轻工业   2篇
石油天然气   10篇
一般工业技术   20篇
冶金工业   5篇
原子能技术   1篇
自动化技术   3篇
  2023年   18篇
  2022年   23篇
  2021年   30篇
  2020年   49篇
  2019年   40篇
  2018年   30篇
  2017年   19篇
  2016年   20篇
  2015年   21篇
  2014年   32篇
  2013年   46篇
  2012年   36篇
  2011年   88篇
  2010年   78篇
  2009年   64篇
  2008年   43篇
  2007年   37篇
  2006年   27篇
  2005年   30篇
  2004年   21篇
  2003年   25篇
  2002年   20篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1980年   3篇
排序方式: 共有856条查询结果,搜索用时 15 毫秒
81.
A gasification/melting facility that can operate up to 10 bar and 1,550 °C with a maximum 1 ton/day capacity was developed for liquid and slurry-type combustible wastes. The main focus of the system development was minimal use of expensive fuel for maintaining the reaction temperature by replacing it with cheap waste oil for energy input. The carbon conversion obtained was 97% while the cold gas efficiency reached 77.6% for the refined waste oil. When the feed was refined oil mixed with fly ash from a municipal waste incinerator, the carbon conversion and cold gas efficiency were 93% and 71.9%, respectively, with a slag conversion ratio of 0.93. The slag produced from fly ash exhibited environmentally acceptable heavy-metal leaching values and thus can be applicable as road material and for other purposes. The optimal O2/feed ratio was 0.9–1.0 when only the refined waste oil was gasified, whereas the O2/feed ratio had to be higher than 1.2 when fly ash was mixed. In addition, data showed that gasifier temperature can be estimated by on-line methane concentration measurements.  相似文献   
82.
This paper describes a novel analytical method that applies a gaspotentiometric oxygen probe (GOP) for characterizing gasification behavior of solid fuels. On the basis of GOP signals a developed gasification model enables the determination of fuel‐specific properties, like effective reaction rate constant and overall activation energy. For its experimental validation two coal cokes were converted with four different gasification agents in a lab‐scale fluidized‐bed reactor. The results obtained will be discussed and compared with literature data. As this advantageous in situ measurement technique is fast, inexpensive, and easy to handle, it makes the GOP a predestined tool for monitoring and controlling gasification processes.  相似文献   
83.
未反应芯收缩模型用于煤焦与CO2加压气化反应的研究   总被引:7,自引:2,他引:5  
用PBBR装置在800-950℃和0.29-2.47MPa条件下进行了三种煤焦与CO2的气化反应。实验结果较好地拟合化学反应控制阶段的未反应芯收缩模型。并由此计算得到了反应化学能,指前因子和反应级数等动力学参数。  相似文献   
84.
孔菁 《贵州化工》2006,31(4):46-48
开磷集团都匀氮肥厂造气废水经沉淀捞渣,去除悬浮物后进入微涡流塔板澄清器中进一步澄清处理,经澄清后的水进入高效玻璃钢冷却塔冷却后,清水泵打入洗气塔内循环使用。  相似文献   
85.
On a laboratory-scale testing platform of impinging entrained-flow gasifier with two opposed burners, the detailed measurements of gas concentration distribution have been performed for carbonaceous compound (diesel oil) at atmospheric pressure. Under the condition of 1.48–2.36 O/C ratios (kg/kg), radial gas samples are collected at three axial positions and the syngas exit position with stainless steel water-cooled probes, the concentration distribution of the major gases (H2, CO, CO2, CH4 and O2) under stable operating state was determined with a mass spectrometry. These data are used to clarify mixing and reaction characteristics within the reactor, to give insight into the combustion process and provide a database for evaluating predictive mathematical models.  相似文献   
86.
Hydrogen could be the energy carrier of the next world scene provided that its production, transportation and storage are solved. In this work the production of an hydrogen-rich gas by air/steam and air gasification of olive oil waste was investigated. The study was carried out in a laboratory reactor at atmospheric pressure over a temperature range of 700 ­ 900 °C using a steam/biomass ratio of 1.2 w/w. The influence of the catalysts ZnCl2 and dolomite was also studied at 800 and 900 °C. The solid, energy and carbon yield (%), gas molar composition and high heating value of the gas (kJ NL− 1), were determined for all cases and the differences between the gasification process with and without steam were established. Also, this work studies the different equilibria taking place, their predominance in each process and how the variables considered affect the final gas hydrogen concentration. The results obtained suggest that the operating conditions were optimized at 900 °C in steam gasification (a hydrogen molar fraction of 0.70 was obtained at a residence time of 7 min). The use of both catalysts resulted positive at 800 °C, especially in the case of ZnCl2 (attaining a H2 molar fraction of 0.69 at a residence time of 5 min).  相似文献   
87.
Two sized fractions (<75 μm and 150–250 μm) of Ban Pu lignite A and Lampang subbituminous B coals were pyrolyzed in a drop tube fixed bed reactor under nitrogen atmosphere at 500–900 °C. Gasification of coal chars with excess carbon dioxide was then performed at 900–1,100 °C. The result was analyzed in terms of reactivity index, reaction rate and activation energy. It was found that chars at lower pyrolysis temperature had highest carbon conversion, and for chars of the same sized fraction and at the same pyrolysis temperature, reactivity indices increased with gasification temperature. The lower rank Ban Pu lignite A had higher R s values than higher rank Lampang subbituminous B coals. Smaller chars from both coals had higher R s values, due to the higher ash content. At present, it can be concluded that, within the gasification temperature range studied, gasification rates of chars obtained at various pyrolysis temperatures showed a linear correlation with temperature. However, additional experiment is needed to verify the correlation.  相似文献   
88.
Dolomite reacts with H2S to produce calcium sulphide and has been broadly investigated as a desulphurisation agent due to its low-cost and favourable properties.Because CaS reacts with water or water vapour in the environment to regenerate hydrogen sulphide and, therefore, disposal is problematic and the chemical cannot be uses as a landfill material. One of the methods used to make this material inert is oxidation to convert calcium sulphide into calcium sulphate or calcium oxide.In our study, tests were carried out using dolomite from Granada, Spain, that was previously calcined and sulphurised at high temperature with a gas similar to that produced in gasification facilities. To approximate real-scale results, a relatively large amount of substance was used for each sample (100–150 g) and the samples were used in a fixed-bed position.The influence of different conditions, such as grain size, composition of the oxidation gas, gas velocity, bed length and temperature, was them investigated. The final solid products were characterised by X-ray diffraction and chemical analysis and the CO2, SO2, H2S and COS concentrations in the gases produced during oxidation were analysed by gas chromatography.The results showed that the most influential factor was grain size and that the best oxidant was O2 mixed with nitrogen.The presence of water vapour increases the residual concentration of CaS in the end product, but increased the CaO contentThe higher the oxygen concentration and the higher the gas velocity, the lower the residual content of CaS. CO2 used alone oxidises CaS to produce SO2 and COS, but at very low rates. It also produces some CS2. Water vapour used alone can also oxidise the CaS to produce H2S and SO2 but also at very low velocity.At higher oxidation temperature, between 700°C and 850 °C, lesser residual CaS is obtained in the oxidised product.  相似文献   
89.
Different bed materials were tested for two-stage fluidized bed gasification, and the hydrogen gas composition and heavy metal distribution in the syngas were investigated. Silica sand, zeolite, calcium oxide, calcined coal, and activated carbon were used. For the results, using activated carbon resulted in the most significant increase in hydrogen after second stage (16.3 mol%) and had highest ratio of hydrogen gas in the syngas (53.1 mol%). For distribution of heavy metals, using activated carbon as bed material in the second stage, the concentration of trapped heavy metals was the highest. Regarding the emission of heavy metals, the use of calcined coal and silica sand resulted in the greatest emission concentration, and activated carbon had the lowest emission concentration. Therefore, to increase the amount of hydrogen gas produced in the gasification process and limit the emission of heavy metals, activated carbon is the best choice of these five bed materials.  相似文献   
90.
In this work, we study the gasification of pellets produced, after densification, by blending olive mill solid wastes, impregnated or not by olive mill waste water, and pine sawdust under different steam/nitrogen atmospheres. The charcoals necessary for the gasification tests were prepared by pyrolysis using a fixed bed reactor. The gasification technique using steam was chosen in order to produce a hydrogen-enriched syngas. Gasification tests were performed using macro-thermogravimetric equipment. Tests were carried out at different temperatures (750 °C, 800 °C, 820 °C, 850 °C and 900 °C), and at different atmospheres composed by nitrogen and steam at different percentages (10%, 20% and 30%). Results show that the mass variation profiles is similar to the usual lingo-cellulosic gasification process. Moreover, the increase of temperatures or water steam partial pressures affects positively the rate of conversion and the char reactivity by accelerating the gasification process. The increase of the gasification yields demonstrates the promise of using olive mill by-products as alternative biofuels (H2 enriched syngas).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号