首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25657篇
  免费   2488篇
  国内免费   1402篇
电工技术   384篇
综合类   1548篇
化学工业   11267篇
金属工艺   1437篇
机械仪表   311篇
建筑科学   657篇
矿业工程   325篇
能源动力   3244篇
轻工业   2656篇
水利工程   123篇
石油天然气   1532篇
武器工业   241篇
无线电   901篇
一般工业技术   2787篇
冶金工业   1113篇
原子能技术   589篇
自动化技术   432篇
  2024年   112篇
  2023年   849篇
  2022年   1072篇
  2021年   1149篇
  2020年   1176篇
  2019年   1096篇
  2018年   972篇
  2017年   1023篇
  2016年   916篇
  2015年   812篇
  2014年   1240篇
  2013年   1527篇
  2012年   1471篇
  2011年   1608篇
  2010年   1203篇
  2009年   1275篇
  2008年   1125篇
  2007年   1448篇
  2006年   1288篇
  2005年   1095篇
  2004年   990篇
  2003年   890篇
  2002年   776篇
  2001年   703篇
  2000年   615篇
  1999年   544篇
  1998年   422篇
  1997年   359篇
  1996年   326篇
  1995年   273篇
  1994年   263篇
  1993年   199篇
  1992年   148篇
  1991年   108篇
  1990年   96篇
  1989年   65篇
  1988年   53篇
  1987年   50篇
  1986年   21篇
  1985年   28篇
  1984年   29篇
  1983年   13篇
  1982年   12篇
  1980年   10篇
  1964年   9篇
  1963年   5篇
  1961年   5篇
  1957年   8篇
  1955年   8篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
This paper reports the preparation and the evaluation of the performance of Ni-based powder catalysts with low nickel loading on the CO2 methanation reaction, that is an integral part of the power-to-gas (PtG) technology. CeO2, CeZrO4 and CeO2/SiO2 were selected as possible supports, and the results of this first screening pointed out that 10%Ni/CeO2 catalyst could offer the best reaction performances because of ceria's peculiar characteristics. Moreover, the promotion of this promising formulation with the addition of a small amount of noble metals (Pt, Ru, Rh) was investigated, showing that platinum in particular can enhance the catalyst performances. A further study related to the noble metal loading pointed out that platinum and ruthenium have a different optimum loading condition: this result, together with the activity tests performed on monometallic formulations with only the noble metal, suggested that the two metals are able to catalyse two different reactions, thus promoting two different reaction mechanisms.  相似文献   
42.
The potential of time‐domain nuclear magnetic resonance (TD‐NMR) for the real‐time monitoring of solution radical polymerizations is demonstrated. A model system composed of a redox‐pair initiator system, acrylamide as monomer and water as solvent was investigated. A second‐generation continuous wave free precession technique was employed to measure the longitudinal relaxation time constant (T1) of the samples throughout the polymerization reactions. This parameter was shown to be sensitive to the reactant feed free‐radical enhancement of the water molecule relaxation time, making it a good probe to monitor monomer conversion in real time in an automated, non‐destructive fashion. It was found that the T1 value was better than the transverse relaxation time constant (T2) for describing the evolution of the polymerization reactions, due to its greater sensitivity to paramagnetic effects. The TD‐NMR signal variation observed was linked to the formation, propagation and termination steps of the radical polymerization kinetics scheme. These first results may contribute to the application of real‐time monitoring of radical polymerization reactions employing low‐cost and robust TD‐NMR spectrometers. © 2018 Society of Chemical Industry  相似文献   
43.
44.
45.
Hierarchical composites represent a class of efficient electrocatalysts for renewable energy storage and conversion technologies owing to the porous structure and additional exposure of metal sites. Herein, a Ni-based metal organic frameworks (MOFs) (marked as Ni-BDC, BDC stands for 1,4-benzenedicarboxylic acid) nanosheet is successfully fabricated on hydroxyl iron oxide (FeOOH) array with carbon fiber cloth (CFC) as substrate. Benefit from the coordination tuning synergistic effect of the distinct chemical composition and the hierarchical structure for fast mass transportation, the as-obtained FeOOH@Ni-BDC illustrates excellent catalytic ability for electrochemical water oxidation with low overpotential of 270 mV to reach 10 mA/cm2 current and good durability in alkaline electrolyte. The novelty of this work lies in the modulation of electronic structure of the FeOOH with Ni-BDC through coordination effect to enhance the activity of the hierarchical composite electrocatalyst. This work is expected to guide the preparation of efficient electrocatalyst for new type alternative energy sources exploitation in near future.  相似文献   
46.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
47.
Water electrolysis powered by renewable electricity will likely be critical to a future hydrogen economy. However, the typical use of strongly acidic or alkaline electrolytes necessitates the use of expensive materials, while bubbles add to capital and operational costs, due to blocking of the electrode surface and the necessary use of pumps and gas-liquid separators. Here ‘bubble-free’ oxygen evolution at mild pH is carried out using an electrocatalyst that mimics photosystem II (PSII). The bubble-free electrode includes a gas-extracting Gore-Tex® membrane. Edge-functionalised graphene (EFG) is included to mimic the metal-binding local protein environment, and the tyrosine residue, in the oxygen evolving complex (OEC) of PSII, while MnOx and Ca2+ are incorporated to mimic the Mn4CaO5 cluster. Interaction between EFG, MnOx, and Ca2+ results in a significant, 130 mV fall in the overpotential required to drive electrocatalytic oxygen evolution at 10 mA cm−2, compared to the electrode without these biomimetic components.  相似文献   
48.
People spend approximately 80% of their time indoor, making the understanding of the indoor chemistry an important task for safety. The high surface-area-to-volume ratio characteristic of indoor environments leads the semi-volatile organic compounds (sVOCs) to deposit on the surfaces. Using a long path absorption photometer (LOPAP), this work investigates the formation of nitrous acid (HONO) through the photochemistry of adsorbed nitrate anions and its enhancement by the presence of furfural. Using a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), this work also investigates the surface emissions of VOCs from irradiated films of furfural and a mix of furfural and nitrate anions. Among the emitted VOCs, 2(5H)-furanone/2-Butenedial was observed at high concentrations, leading to maleic anhydride formation after UV irradiation. Moreover, the addition of potassium nitrate to the film formed NOx and HONO concentrations up to 10 ppb, which scales to ca. 4 ppb for realistic indoor conditions. This work helps to understand the high levels of HONO and NOx measured indoors.  相似文献   
49.
The chlorothiophenoxy radicals (CTPRs) are key intermediate species in the formation of polychlorinated dibenzothiophenes/thianthrenes (PCDT/TAs). In this work, the formation of CTPRs from the complete series reactions of 19 chlorothiophenol (CTP) congeners with H and OH radicals were investigated theoretically by using the density functional theory (DFT) method. The profiles of the potential energy surface were constructed at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants were evaluated by the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) contribution at 600–1200 K. The present study indicates that the structural parameters, thermal data, and rate constants as well as the formation potential of CTPRs from CTPs are strongly dominated by the chlorine substitution at the ortho-position of CTPs. Comparison with the study of formation of chlorophenoxy radicals (CPRs) from chlorophenols (CPs) clearly shows that the thiophenoxyl-hydrogen abstraction from CTPs by H is more efficient than the phenoxyl-hydrogen abstraction from CPs by H, whereas the thiophenoxyl-hydrogen abstraction from CTPs by OH is less impactful than the phenoxyl-hydrogen abstraction from CPs by OH. Reactions of CTPs with H can occur more readily than that of CTPs with OH, which is opposite to the reactivity comparison of CPs with H and OH.  相似文献   
50.
Facile yet efficient synthesis of high-performance nanocatalysts for hydrogen evolution from ammonia-borane (AB) hydrolysis is paramount. Here, we reported a novel hybrid nanocatalyst comprised of Rh nanoclusters (1.56 nm in diameters) anchored on nitrogen (N)-doped carbon nanotubes with embedded Ni nanoparticles (Ni@NCNTs), which was fabricated through adsorption of Rh ions on Ni@NCNTs. The achieved hybrid of Rh/Ni@NCNTs displayed excellent catalytic property (Turnover frequency: 959 min−1) toward AB hydrolysis, higher than many prior developed Rh-based catalysts. Note that this hybrid could be reused for at least nine runs with complete AB conversion to hydrogen. Rh nanoclusters with small size exhibiting high atom utilization and the synergetic effect between Ni and Rh are responsible for the excellent catalytic property of Rh/Ni@NCNTs toward AB hydrolysis. This work highlights the importance of utilization of magnetically recyclable Ni@NCNTs as support and synergetic component for efficient hydrolysis of AB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号