首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1142篇
  免费   2篇
  国内免费   7篇
电工技术   3篇
综合类   6篇
化学工业   113篇
金属工艺   44篇
机械仪表   14篇
建筑科学   4篇
能源动力   25篇
轻工业   2篇
无线电   15篇
一般工业技术   906篇
冶金工业   8篇
原子能技术   8篇
自动化技术   3篇
  2024年   1篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   3篇
  2017年   7篇
  2016年   10篇
  2015年   9篇
  2014年   62篇
  2013年   89篇
  2012年   46篇
  2011年   136篇
  2010年   121篇
  2009年   115篇
  2008年   108篇
  2007年   72篇
  2006年   34篇
  2005年   61篇
  2004年   59篇
  2003年   48篇
  2002年   68篇
  2001年   12篇
  2000年   8篇
  1999年   7篇
  1998年   11篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
排序方式: 共有1151条查询结果,搜索用时 15 毫秒
21.
Failure of components due to high temperature oxidation is the major degradation mechanism in boiler and gas turbine industries. Superalloys having superior mechanical properties and creep resistance are used in these applications but lack resistance to oxidation under aggressive environments. Protective coatings are used to improve their oxidation resistance in such applications. In the present investigation, Al2O3–40%TiO2 coating was deposited on superni 718 and superni 601 superalloys by low velocity oxy fuel process. The as sprayed coating was characterised for microhardness, surface roughness, scanning electron microscopy and X-ray diffraction analysis. High temperature oxidation behaviour of Al2O3–40%TiO2 coated and uncoated superni 718 and superni 601 superalloys has been evaluated at the elevated temperatures of 800 and 900°C for total duration of 50 cycles under cyclic conditions. Each cycle consisted of keeping the samples for 1 h at the elevated temperature followed by 20 min cooling in ambient air. Al2O3–40TiO2 coating in the as sprayed condition showed the presence of Al2O3–TiO2, α-Al2O3, TiO2 as the main phases. Al2O3–40%TiO2 coating on superni 718 and superni 601 superalloys has shown a lower oxidation rate as compared to those of uncoated superalloys. However, the oxidation rate of the coating was not steady due to the occurrence of spallation/sputtering at various stages. The coating was found adherent on the substrate superalloys throughout the study.  相似文献   
22.
Er-doped ZnO nanosheets with high quality were synthesized by the hydrothermal and post-annealing techniques, and the effect of erbium dopant on the structures, morphologies and photoluminescence properties of the as-synthesized samples were determined using XRD, SEM, TEM, EDS, PL and Raman spectroscopy. The results showed that Er3+ ions were successfully incorporated into the crystal lattice of ZnO host, and some irregular porous microstructure with diameter of 3–10 nm could be seen on ZnO nanosheets as various doping concentrations. It was found that the crystallization and photoluminescence properties of ZnO nanosheets were strongly influenced by erbium doping concentration. The ultraviolet emission and deep level emission were both appeared in PL spectra, and the intensity of the whole deep level emission was enhanced with erbium doping, indicating the deep-level-defect luminescent centers were increased in the doped samples. Moreover, the crystallization of the samples became worse due to more defects by erbium doping.  相似文献   
23.
Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect.  相似文献   
24.
The heterogeneous nanocomposites of CuO doped TiO2 nanoparticles were synthesized using sol gel method by varying the concentration of CuO as 0.1, 0.5 and 1 mol% for the sensing of ammonia and hydrogen sulphide. The substitutional doping of CuO in TiO2 matrix was confirmed by the X-ray diffraction. Average crystallite size of the doped nanocomposites was found to reduce with increase in concentration of CuO. The 0.1 mol% CuO doped TiO2 nanocomposites showed highest sensitivity to ammonia (97%) with response time of 2 s, while 1 mol% was selective to H2S gas (77%) with response time of 45 s for 50 ppm of each gas at room temperature.  相似文献   
25.
Tellurite glass systems in the form 80(TeO2)–5(TiO2)–(15 − x)(WO3)–(x)AnOm have been prepared by the melt quenching technique. The AnOm oxide was Nb2O5 or Nd2O3 or Er2O3 and x ≤ 5 mol%. Density and Molar volume have been determined for the prepared glasses. Both longitudinal and shear ultrasonic velocities were measured in different compositions of the glass system by using the pulse-echo method at 5 MHz frequency and at room temperature. Ultrasonic velocity and density data have been used to calculate elastic moduli (longitudinal modulus L, shear modulus G, Young's modulus E, Bulk modulus K), Poisson's ratio σ, and Debye temperature θD. Quantitative analysis of elastic moduli based on the number of bonds per unit volume, average crosslinks and number of vibrating atoms per unit volume has been achieved.  相似文献   
26.
A lithium-doped zinc oxide (ZnO) film was obtained by the anodic oxidation of a zinc sheet in a lithium hydroxide (LiOH) solution under an external DC voltage. The formation of the ZnO film on the surface of the Zn sheet is attributed to two simultaneous processes: the electrochemical oxidation of Zn to ZnO, and the chemical dissolution of ZnO. It was also confirmed that Li element was successfully introduced into the lattice of the ZnO film. The curves of the polarization versus applied field were measured to be hysteresis loops, suggesting ferroelectricity of the Li-doped ZnO film. The remanent polarization and the coercive field of the film were measured to be 4.7 × 10−3 C m−2 and 1.2 × 107 V m−1, respectively. This ferroelectricity is believed to be the result of the occupation of off-centered positions in oxygen tetrahedra by the Li+ ions.  相似文献   
27.
This article is aimed to discuss the chemical aspects of detonation spraying of powder materials. In this method of coating deposition, ceramic, metallic or composite powders are injected into the barrel of a detonation gun filled with an explosive gaseous mixture. When the latter is ignited, the powders are heated and accelerated toward the substrate. Subjected to high temperatures, the powders are prone to chemical reactions, the reaction products possibly becoming the major phase constituents of the coatings. What types of reactions are possible? Can these reactions be carried out in a controlled manner? We answer these questions considering the interactions of the sprayed powders with the gaseous environment of the barrel as well as those between the phases of a composite feedstock powder. In Computer-Controlled Detonation Spraying (CCDS), the explosive charge and stoichiometry of the fuel-oxygen mixtures are precisely measured and can be flexibly changed. Our studies demonstrate that with the introduction of a highly flexible process of CCDS, detonation spraying has entered a new development stage, at which it can be considered as a powerful method of composition and microstructure tailoring of thermally sprayed coatings. During CCDS of TiO2-containing powders, chemical reduction of titanium dioxide can be carried out to different levels to form either oxygen-deficient TiO2−x or Ti3O5 suboxide. CCDS of Ti3Al can produce titanium oxide coatings when oxidation by the detonation products dominates or titanium nitride-titanium aluminide coatings when oxidation is hindered but the interaction of the powders with nitrogen—a carrier gas component—is favored. During detonation spraying of Ti3SiC2–Cu composites, the Ti3SiC2 phase is preserved only in cold conditions; otherwise, Si de-intercalates from the Ti3SiC2 phase and dissolves in Cu resulting in the formation of the TiCx–Cu(Si) composite coatings.  相似文献   
28.
喷油提前角对柴油机排放影响的研究   总被引:12,自引:0,他引:12  
在调整柴油机喷油提前角的情况下,实测了柴油机气体和颗粒排放浓度,并对试验结果进行了分析。当喷油提前角由5°CA调整为7.5°CA时,PM、CO和HC排放值显著降低,NOX排放值显著升高;当喷油提前角由7.5°CA调整为10°CA时,PM继续降低,NOX、CO和HC都有所增加,但幅度都不大。表明增大喷油提前角可有效地降低颗粒排放,但同时要考虑到NOX、CO和HC浓度的增加。该研究对电控柴油机喷油参数的优化具有一定的参考价值。  相似文献   
29.
Nitrogen oxides emitted from power plants and the chemical industry are poisonous to humans and animals, contribute to ozone depletion, and cause acid rain. More than 90% of nitrogen oxides (NOx) consist of nitric oxide (NO), which is insoluble in water. Among the various available techniques of NOx abatement, ozone injection is a promising method in which NO is oxidized to higher-order nitrogen oxides (NO3, N2O3, N2O4, and N2O5), which can easily be absorbed in a wet scrubber. In this article, the ozone injection process integrated with an absorber column is numerically modeled and simulated at various operating conditions. The predicted results of NOx oxidation with ozone injection and absorption in water agree with the published experimental results. The ozone injection process is modeled using a plug flow reactor, while the wet absorption is based on a rigorous rate-based RateFrac model. Detailed kinetic mechanisms of O3-NOx oxidation and absorption of nitrogen oxides in water are incorporated in the model to simultaneously predict the performance efficiency of the ozone reactor and absorber column. Thermodynamic properties of the components are estimated using an Electrolyte NRTL model. The influence of performance parameters (such as feed gas flow rate, inlet gas temperature, reactor configurations, ozone concentration, and NO/NO2 molar ratio) on the oxidation efficiency of NOx in the reactor and absorber column is investigated to predict the optimal operating conditions.  相似文献   
30.
The paper presents the experimental results showing that the crystalline phase of the nano-particles, synthesized in a DC transferred arc thermal plasma reactor, critically depend on the operating pressure in the reaction zone. The paper reports about the changes in crystalline phases of three different compounds namely: aluminium oxide (Al2O3), aluminium nitride (AlN) and iron oxide (FexOy) synthesized at 760 Torr and 500 Torr of operating pressures. The major outcome of the present work is that the phases having higher defect densities are more probable to form at the sub-atmospheric operating pressures. The variations in the crystalline structures are discussed on the basis of the change in the temperature during the nucleation process, prevailing at the boundary of the plasma, on account of the ambient pressures. The as-synthesized nano-particles were examined by X-ray diffraction analysis and transmission electron microscopy. In addition, the confirmatory analysis of the crystalline phases of iron oxides was carried out with the help of Mössbauer spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号