首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   14篇
  国内免费   8篇
电工技术   2篇
综合类   3篇
机械仪表   2篇
武器工业   1篇
无线电   19篇
一般工业技术   1篇
自动化技术   50篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.
一种动态不确定性环境中的持续规划系统   总被引:5,自引:1,他引:5  
李响  陈小平 《计算机学报》2005,28(7):1163-1170
规划是人工智能研究的一个重要方向,具有极其广泛的应用背景.近年来,研究重点已经转移到动态不确定性环境中的规划问题.该文将部分可观察马尔可夫决策过程(POMDP)和过程性推理系统(PRS)的优点相结合,提出一种对动态不确定环境具有更全面适应能力的持续规划系统——POMDPRS.该系统利用PRS的持续规划机制,交叉地进行规划与执行,在一定条件下提高了动态环境中POMDP决策的效率;另一方面,用POMDP的概率分布信念模型和极大效用原理替代PRS的一阶逻辑信念表示和计划选择机制,大大增强了处理环境不确定性的能力.  相似文献   
42.
    
In highly flexible and integrated manufacturing systems, such as semiconductor fabs, strong interactions between the equipment condition, operations executed on the various machines and the outgoing product quality necessitate integrated decision making in the domains of maintenance scheduling and production operations. Furthermore, in highly complex manufacturing equipment, the underlying condition is not directly observable and can only be inferred probabilistically from the available sensor readings. In order to deal with interactions between maintenance and production operations in Flexible Manufacturing Systems (FMSs) in which equipment conditions are not perfectly observable, we propose in this paper a decision-making method based on a Partially Observable Markov Decision Processes (POMDP's), yielding an integrated policy in the realms of maintenance scheduling and production sequencing. Optimization was pursued using a metaheuristic method that used the results of discrete-event simulations of the underlying manufacturing system. The new approach is demonstrated in simulations of a generic semiconductor manufacturing cluster tool. The results showed that, regardless of uncertainties in the knowledge of actual equipment conditions, jointly making maintenance and production sequencing decisions consistently outperforms the current practice of making these decisions separately.  相似文献   
43.
Adaptive sensing involves actively managing sensor resources to achieve a sensing task, such as object detection, classification, and tracking, and represents a promising direction for new applications of discrete event system methods. We describe an approach to adaptive sensing based on approximately solving a partially observable Markov decision process (POMDP) formulation of the problem. Such approximations are necessary because of the very large state space involved in practical adaptive sensing problems, precluding exact computation of optimal solutions. We review the theory of POMDPs and show how the theory applies to adaptive sensing problems. We then describe a variety of approximation methods, with examples to illustrate their application in adaptive sensing. The examples also demonstrate the gains that are possible from nonmyopic methods relative to myopic methods, and highlight some insights into the dependence of such gains on the sensing resources and environment.
Alfred O. Hero IIIEmail:

Edwin K. P. Chong   received the BE(Hons) degree with First Class Honors from the University of Adelaide, South Australia, in 1987; and the MA and PhD degrees in 1989 and 1991, respectively, both from Princeton University, where he held an IBM Fellowship. He joined the School of Electrical and Computer Engineering at Purdue University in 1991, where he was named a University Faculty Scholar in 1999, and was promoted to Professor in 2001. Since August 2001, he has been a Professor of Electrical and Computer Engineering and a Professor of Mathematics at Colorado State University. His research interests span the areas of communication and sensor networks, stochastic modeling and control, and optimization methods. He coauthored the recent best-selling book, An Introduction to Optimization, 3rd Edition, Wiley-Interscience, 2008. He is currently on the editorial board of the IEEE Transactions on Automatic Control, Computer Networks, Journal of Control Science and Engineering, and IEEE Expert Now. He is a Fellow of the IEEE, and served as an IEEE Control Systems Society Distinguished Lecturer. He received the NSF CAREER Award in 1995 and the ASEE Frederick Emmons Terman Award in 1998. He was a co-recipient of the 2004 Best Paper Award for a paper in the journal Computer Networks. He has served as Principal Investigator for numerous funded projects from NSF, DARPA, and other funding agencies. Christopher M. Kreucher   received the BS, MS, and PhD degrees in Electrical Engineering from the University of Michigan in 1997, 1998, and 2005, respectively. He is currently a Senior Systems Engineer at Integrity Applications Incorporated in Ann Arbor, Michigan. His current research interests include nonlinear filtering (specifically particle filtering), Bayesian methods of fusion and multitarget tracking, self localization, information theoretic sensor management, and distributed swarm management. Alfred O. Hero III   received the BS (summa cum laude) from Boston University (1980) and the PhD from Princeton University (1984), both in Electrical Engineering. Since 1984 he has been with the University of Michigan, Ann Arbor, where he is a Professor in the Department of Electrical Engineering and Computer Science and, by courtesy, in the Department of Biomedical Engineering and the Department of Statistics. He has held visiting positions at Massachusetts Institute of Technology (2006), Boston University, I3S University of Nice, Sophia-Antipolis, France (2001), Ecole Normale Superieure de Lyon (1999), Ecole Nationale Superieure des Telecommunications, Paris (1999), Scientific Research Labs of the Ford Motor Company, Dearborn, Michigan (1993), Ecole Nationale Superieure des Techniques Avancees (ENSTA), Ecole Superieure d’Electricite, Paris (1990), and M.I.T. Lincoln Laboratory (1987–1989). His recent research interests have been in areas including: inference for sensor networks, adaptive sensing, bioinformatics, inverse problems. and statistical signal and image processing. He is a Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a member of Tau Beta Pi, the American Statistical Association (ASA), the Society for Industrial and Applied Mathematics (SIAM), and the US National Commission (Commission C) of the International Union of Radio Science (URSI). He has received a IEEE Signal Processing Society Meritorious Service Award (1998), IEEE Signal Processing Society Best Paper Award (1998), a IEEE Third Millenium Medal and a 2002 IEEE Signal Processing Society Distinguished Lecturership. He was President of the IEEE Signal Processing Society (2006–2007) and during his term served on the TAB Periodicals Committee (2006). He was a member of the IEEE TAB Society Review Committee (2008) and is Director-elect of IEEE for Division IX (2009).   相似文献   
44.
针对目标检测与跟踪时辐射控制问题,提出一种面向协同检测与跟踪的多传感器长时调度方法.首先建立基于部分马尔可夫决策过程(POMDP)的目标跟踪与辐射控制模型;然后以随机分布粒子计算新生目标检测概率,以后验克拉美-罗下界(PCRLB)预测长时跟踪精度,以隐马尔可夫模型(HMM)滤波器推导长时辐射代价;最后构建新生目标检测概率和已有目标跟踪精度约束下辐射控制的长时优化函数,给出基于贪婪搜索的分支定界算法求解最优调度序列.仿真结果验证了所提出方法的有效性.  相似文献   
45.
为提高室内动态环境下服务机器人对行人的自然避让能力,对人的运动轨迹模式进行建模,在此基础上引入了将行人运动长、短期预测结合起来的方法.为适应传感器噪声及网络延迟等因素所造成的感知—控制回路中的多源不确定性,将人与机器人的相对位置关系建模为部分可观的马尔可夫状态.采用部分可观的马尔可夫决策过程(POMDP)进行多源不确定性下的概率决策,协调控制机器人全局路径规划、反应式运动及速度控制等行为模块.实验结果验证,它能够实现提前避碰的安全导航,因避免反复的曲折与徘徊运动而提高了机器人导航效率.  相似文献   
46.
针对无人机在路径规划过程中会遇到静态或者动态的障碍物,从而导致路径规划失败的问题,提出一种基于部分可观测马尔可夫决策过程(partially observable markov decision process,POMDP)模型的人工势场(artificial potential field,APF)无人机路径规划策略(POMDP-APF)。首先使用传感器获得的障碍物信息结合POMDP模型预测障碍物的未来位置,为无人机的路径规划做准备;其次,提出一种新的基于障碍物的正方体外接球的模型,保障无人机在路径规划过程中的安全性;最后,结合改进的APF算法实现无人机的路径规划。仿真结果表明,POMDP-APF策略在无人机实时路径规划中具有良好的可行性和有效性,使无人机能够有效避开障碍物,同时路径长度以及耗费时间更短。  相似文献   
47.
研究了具有ARQ功能的基于衰落信道和数据链路层缓冲区队列状态的资源最优分配问题,为了通过自适应调整功率分配和调制方式,在系统平均功率的限制下,使系统的吞吐量达到最大,该文把这个优化问题构造为马尔可夫决策过程,并提出了用动态规划解决该问题的方法。  相似文献   
48.
于丹宁  倪坤  刘云龙 《计算机工程》2021,47(2):90-94,102
基于卷积神经网络的部分可观测马尔科夫决策过程(POMDP)值迭代算法QMDP-net在无先验知识的情况下具有较好的性能表现,但其存在训练效果不稳定、参数敏感等优化难题.提出基于循环卷积神经网络的POMDP值迭代算法RQMDP-net,使用门控循环单元网络实现值迭代更新,在保留输入和递归权重矩阵卷积特性的同时增强网络时序...  相似文献   
49.
针对动态不确定环境下的机器人路径规划问题,将部分可观察马尔可夫决策过程(POMDP)与人工势场法(APF)的优点相结合,提出一种新的机器人路径规划方法。该方法充分考虑了实际环境中信息的部分可观测性,并且利用APF无需大量计算的优点指导POMDP算法的奖赏值设定,以提高POMDP算法的决策效率。仿真实验表明,所提出的算法拥有较高的搜索效率,能够快速地到达目标点。  相似文献   
50.
         下载免费PDF全文
In traditional cognitive radio (CR) network,secondary users (SUs) are always assumed to obey the rule of “introducing no interference to the primary users (PUs) ”.However,this assumption may be not rea...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号