首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1566篇
  免费   29篇
  国内免费   29篇
电工技术   115篇
综合类   21篇
化学工业   335篇
金属工艺   68篇
机械仪表   6篇
建筑科学   6篇
矿业工程   3篇
能源动力   930篇
石油天然气   4篇
武器工业   1篇
无线电   13篇
一般工业技术   77篇
冶金工业   31篇
自动化技术   14篇
  2024年   1篇
  2023年   31篇
  2022年   42篇
  2021年   58篇
  2020年   58篇
  2019年   70篇
  2018年   53篇
  2017年   49篇
  2016年   29篇
  2015年   16篇
  2014年   66篇
  2013年   76篇
  2012年   82篇
  2011年   216篇
  2010年   134篇
  2009年   162篇
  2008年   150篇
  2007年   141篇
  2006年   56篇
  2005年   25篇
  2004年   31篇
  2003年   20篇
  2002年   16篇
  2001年   8篇
  2000年   11篇
  1999年   9篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1951年   1篇
排序方式: 共有1624条查询结果,搜索用时 15 毫秒
991.
To study the effect of electric field on the characteristics of flash sintered materials, 8% mol. Yttria-stabilized zirconia (8YSZ) was isothermally flash sintered under various electric field strengths as a solid oxide fuel cell (SOFC) electrolyte. Structural, microstructural, and electrical characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Electrochemical impedance spectroscopy (EIS), respectively. Results show that the electric field did not affect the relative density of flash sintered 8YSZ. Electric fields stronger than 300 V cm?1, however, transformed the cubic structure to tetragonal. Microstructural studies show that the average grain size of samples is independent of the applied electric field strength. Electrochemical impedance spectroscopy showed changes in the grain boundary characteristics upon using the electric field for flash sintering. Oxygen vacancy concentration in the grain boundary of flash sintered samples was more than ten times higher than conventionally sintered ones, which improved the conductivity in flash sintered samples.  相似文献   
992.
Metallic interconnect oxidation has a significant influence on shear strength between interconnect and sealing glass in SOFC stack operation. This is attributed to high-temperature mutual wettability. In this work, the glass having different crystallization kinetics was chosen to evaluate wettability and shear strength on Fe–16Cr alloy, which was heated treated at 750°C for 0, 50, and 100 h, forming oxide scale with a varying rough surface. Visual observation was used to quantify equilibrium contact angles between glass and substrates. The results illustrated that alloy oxidized for 50 h exhibited better wettability and shear strength, implying that thickness and roughness of the oxide scale are critical to enhancing interface joint strength. Long-term testing indicated that thermally stable glass possesses higher joint shear strength and more consistent properties. It was found that precipitated crystalline phases limited improvement of glass wettability, resulting in interfacial delamination of the glass/alloy layer over long-term operation.  相似文献   
993.
The current study was oriented at analyzing the performance of an anode-supported solid oxide fuel cell produced using high-pressure injection molding. The cell with a total thickness of 550 μm was produced in the Ceramic Department (CEREL) of the Institute of Power Engineering in Poland and experimentally analyzed in the Energy Department (DENERG) of Politecnico di Torino in Italy. The high-pressure injection molding technique was applied to produce a 500 μm thick anode support NiO/8YSZ 66/34 wt% with porosity of 25 vol%. The screen printing method was used to print a 3 μm thick NiO anode contact layer, 7 μm thick NiO/8YSZ 50/50 wt% anode functional layer, 4 μm thick 8YSZ dense electrolyte, 1.5 μm thick Gd0,1Ce0,9O2 barrier layer and a 30 μm thick La0,6Sr0,4Fe0,8Co0,2O3–δ cathode with porosity 25 vol%.The experimental characterization was done at two temperature levels: 750 and 800 °C under fixed anodic and cathodic flow and compositions. The preliminary studies on the application of high-pressure injection molding are discussed together with the advantages of the technology. The performance of two generations of anode-supported cells is compared with data of reference cells with supports obtained using tape casting.  相似文献   
994.
Intermediate-temperature solid oxide fuel cells (IT-SOFCs) are promising SOFC technologies that can solve many problems of high-temperature SOFCs (HT-SOFCs), such as the stringent restriction on material selection, accelerated degradation of electrode activity, limitation in thermal cycling, and requirement for long start-up times. In this study, a comprehensive three-dimensional micro/macroscale model is developed for simulating planar, anode-supported IT-SOFCs fueled with hydrogen. Many constitutive sub-models for electrode microstructure, detailed charge-transfer processes, and heat/mass transport in three-dimensional interconnect plate/gas channel geometries are combined to investigate the performance and operating characteristics of IT-SOFCs with rather standard materials (such as nickel, YSZ, LSM, and stainless steel). The current−voltage performance curves are presented along with the contribution of activation, concentration, ohmic, and contact overpotentials to total potential loss. In addition, the spatial distributions of temperature, current density, and species concentrations are also investigated for co- and counter-flow configurations. The results clearly demonstrate the capabilities of the present three-dimensional micro/macroscale model as an accurate and efficient design tool for optimizing the operating conditions, electrode microstructures, and cell geometries of planar, anode-supported IT-SOFCs.  相似文献   
995.
In this study, a co-dopant CGO was synthesized to produce more efficient cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFC) applications. Neodymium (Nd) was doped into CGO in four different weight ratios in the formula NdxGd0.15Ce0.85-xO2-δ (NGCO); the selected percentages for x were 1%, 3%, 5% and 7%. XRD patterns showed pure phase for all synthesized compositions and good compatibility at high temperature under static air with the most common ceramic cathode material in IT-SOFC (La0·60Sr0·40Co0·20Fe0·80O2-ä, LSCF). Impedance spectroscopic characterization of symmetrical cells of the composite NGCO-LSCF at different temperatures (650–800 °C in steps of 50 °C) and a frequency range of 0.1–1 MHz in synthetic air revealed interesting results. The lowest polarization resistance (Rp) was achieved for Nd0.05Gd0.15Ce0·80O2-δ (0.06 Ω cm2 at 800 °C, 0.17 Ω cm2 at 750 °C, 0.31 Ω cm2 at 700 °C, and 0.59 Ω cm2 at 650 °C). The expected decrease in Rp was not observed for the sample with higher Nd content (7% Nd). Thus, it can be said that there is a distinction between the compositions Nd0.05Gd0.15Ce0·80O2-δ and Nd0.07Gd0.15Ce0·78O2-δ; the co-doping of Nd in NGCO incremented the oxygen ion diffusion path, thereby optimization in the triple phase boundary (TPB) sites was obtained. Furthermore, SEM and TGA measurements were conducted to clarify the reasons of such improvements. This work showed that an NGCO-LSCF composite can be considered as a potential candidate for cathode material for future IT-SOFC applications.  相似文献   
996.
Oxidation behavior of porous P434L ferritic stainless steel, used for the fabrication of metal-supported solid oxide fuel cells (MS-SOFC), is studied under anodic and cathodic atmospheres. Temperature- and atmosphere-dependence is determined for as-sintered and pre-oxidized stainless steel. Pre-oxidation reduced the long-term oxidation rate. For pre-oxidized samples, the oxidation rate in air exceeds that in humid hydrogen for temperatures above 700 °C. The influence of PrOx, LSCF-SDC, and Ni-SDC coatings is also examined. The coatings do not dramatically impact oxide scale growth. Oxidation in C-free and C-containing anodic atmospheres is similar. Addition of CO2, CH4, and CO to humidified hydrogen to simulate ethanol reformate does not significantly impact oxidation behavior. Cr transpiration in humid air is greatly reduced by the PrOx coating, and a PrCrO3 reaction product is observed throughout the porous structure. A dense and protective chromia-based scale forms on steel samples during oxidation in all conditions. A thin silica enriched oxide layer also forms at the metal-scale interface. In general, the oxidation behavior at 700 °C is found to be acceptable.  相似文献   
997.
Sample NiTiO3 (NTO) is prepared by the molten salts synthesis route as a potential anode material for solid oxide fuel cell (SOFC) applications. An additional sample impregnated with 5 mol%Ni (N-NTO) is also presented. Structural characterization reveal a pure NiTiO3 phase upon calcination at 850 °C and 1000 °C. Redox characterization by temperature programmed reduction tests indicate the transition from NiTiO3 to Ni/TiO2 at ca. 700 °C. Ni nanoparticles (ca. 26 nm) are exsolved in-situ from the structure after a reducing treatment at 850 °C. Catalytic activity tests for partial oxidation of methane performed in a fixed bed reactor reveal excellent values of activity and selectivity due to the highly dispersed Ni nanoparticles in the support surface. Time-on-stream behavior during 100 h operation in reaction conditions for sample N-NTO yield a stable CH4 conversion. Electrolyte supported symmetrical cells are prepared with both materials achieving excellent polarization resistance of 0.023 Ω cm2 in 7%H2/N2 atmosphere at 750 °C with sample N-NTO. The maximum power density achieved is of 273 mW cm−2 at 800 °C with a commercial Pt ink used as a reference cathode, indicating further improvement of the system can be achieved and positioning the N-NTO material as a promising SOFC anode material.  相似文献   
998.
In order to develop economically competitive solid oxide fuel cell (SOFC) systems it is necessary to design new functional materials with the purpose of enhancing their performance, extending operational lifetime and reducing the cost. The present work focuses on the study of Pr2-xCaxNiO4+δ cathode materials prepared by a simple and cheap conventional solid state reaction method. The structure, oxygen nonstoichiometry, electrical properties and chemical compatibility of the materials with a number of well-known oxygen ion and proton conducting electrolytes were systematically investigated. Chemical composition (Ca content) and technological factors (powders pre-history, electrodes' sintering temperature), as well as external parameters (temperature, air humidity) were correlated with the electrochemical performance of the electrodes to determine the optimal compositions and conditions. Based on this study and testing results of the single anode-supported cell with BaCe0.89Gd0.1Cu0.01O3-δ electrolyte, the Pr1.7Ca0.3NiO4+δ-based electrode compositions are proposed for preferred usage in SOFCs in place of Pr2NiO4+δ electrode.  相似文献   
999.
Lanthanum doped strontium titanate–gadolinium doped cerium oxide (LST-GDC) anodic layers are sintered in air and further reduced in-situ at low temperature (750 °C) avoiding usually performed pre-reduction treatment at high temperature. The influence of various milling techniques and of powders with different specific surface area, on the microstructures of screen-printed anodes, is investigated. The combination of milling and sonication processes is efficient in reducing aggregation of the anode powders. The anode performance is improved when a planetary milling step is involved in the preparation of the screen printing inks. The use of gadolinium doped cerium oxide with high specific surface area decreases the polarization resistance. The rate of hydrogen oxidation is also enhanced by increasing porosity.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号