Optimal solutions in environmental catalysis require a well-coordinated development of catalysts and of process design. This contribution is devoted to energy integrated design concepts for fuel reforming and for automotive exhaust purification. The examples presented demonstrate the importance of an innovative process design for optimal utilization of existing catalysts and show the potential of future developments.
New concepts for steam reforming through the efficient coupling of the endothermic reforming reaction with an exothermic combustion reaction are discussed in the first part. These concepts have been implemented for methanol steam reforming in a counter-current reactor with distributed side feed of burner gas and for methane steam reforming in a modular reactor with a co-current reaction section for the endothermic and the combustion reaction and attached counter-current heat exchangers. Both applications employ the so-called folded sheet reactor design, which ensures an excellent heat transfer between the reforming and combustion channels and efficient heat recovery.
A similar design solution is introduced for the apparently different case of automotive exhaust purification. The proposed concept aims at decoupling exhaust after-treatment from engine control. Its main component is a counter-current heat exchanger with integrated purification stages for HC-oxidation, NOX storage and reduction and soot filtering. A small catalytic burner at the hot end of the heat exchanger provides both heat and oxidizing or reducing agents on demand. A new soot filter design allows for safe soot filter regeneration. 相似文献
Steam reforming of methanol was carried out over a series of doped CuO–CeO2 catalysts prepared via the urea–nitrate combustion method. XRD analysis showed that at least part of the dopant cations enter the ceria lattice. The addition of various metal oxide dopants in the catalyst composition affected in a different way the catalytic performance towards H2 production. Small amounts of oxides of Sm and Zn improved the performance of CuO–CeO2, while further addition of these oxides caused a decrease in catalyst activity. XPS analysis of Zn- and Sm-doped catalysts showed that increase of dopant loading leads to surface segregation of the dopant and decrease of copper oxide dispersion. The addition of oxides of La, Zr, Mg, Gd, Y or Ca lowered or had no effect on catalytic activity, but led to less CO in the reaction products. Noble-metal modified catalysts had slightly higher activity, but the CO selectivity was also significantly higher. 相似文献
The formation of surface species in the ethanol–water interaction and the reforming of ethanol have been investigated on Pt/Al2O3 catalysts and for comparison on the support. By means of infrared spectroscopy it was found that on Pt/Al2O3 not only adsorbed ethanol, different types of ethoxy species but also traces of acetaldehyde and a significant amount of acetate groups were detectable on the surface. The latter species were stable even at 700 K. The gas phase analysis of the ethanol-dosed surface showed at higher temperature considerable amount of ethylene in the case of Al2O3 and hydrogen in the case of Pt/Al2O3.
In the ethanol + water reaction the selectivity of H2 and CO2 formation at 723 K decreased in time, while that of ethylene increased. This trend was attenuated by increasing the following parameters: water concentration, metal loading and reaction temperature. It was assumed that this behavior of Pt/Al2O3 in the ethanol + water reaction can be attributed to the formation of surface acetate groups which hindered the reaction on the metal, although these species were located rather on the support. 相似文献
The present work summarizes the recent activities of our laboratory in the field of solar-aided hydrogen production with structured monolithic solar reactors. This reactor concept, “transferred” from the well-known automobile exhaust catalytic after-treatment systems, employs ceramic supports optimized to absorb effectively solar radiation and develop sufficiently high temperatures, that are coated with active materials capable to perform/catalyze a variety of “solar-aided” reactions for the production of hydrogen such as water splitting or natural gas reforming. Our work evolves in an integrated approach starting from the synthesis of active powders tailored to particular hydrogen production reactions, their deposition upon porous absorbers, testing of relevant properties of merit such as thermomechanical stability and hydrogen yield and finally to the design, operation simulation and performance optimization of structured monolithic solar hydrogen production reactors. This approach, among other things, has culminated to the world's first closed, solar-thermochemical cycle in operation that is capable of continuous hydrogen production employing entirely renewable and abundant energy sources and raw materials – solar energy and water, respectively – without any CO2 emissions and holds, thus, a significant potential for large-scale, emissions-free hydrogen production, particularly for regions of the world that lack indigenous resources but are endowed with ample solar energy. 相似文献