首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195782篇
  免费   24634篇
  国内免费   23922篇
电工技术   18614篇
技术理论   8篇
综合类   13511篇
化学工业   41053篇
金属工艺   8189篇
机械仪表   12684篇
建筑科学   8722篇
矿业工程   2312篇
能源动力   6492篇
轻工业   14647篇
水利工程   2452篇
石油天然气   4568篇
武器工业   1978篇
无线电   30753篇
一般工业技术   21100篇
冶金工业   4217篇
原子能技术   3337篇
自动化技术   49701篇
  2024年   1056篇
  2023年   3586篇
  2022年   6410篇
  2021年   7412篇
  2020年   7065篇
  2019年   6431篇
  2018年   5970篇
  2017年   8031篇
  2016年   8737篇
  2015年   9931篇
  2014年   9626篇
  2013年   12905篇
  2012年   14627篇
  2011年   16509篇
  2010年   11851篇
  2009年   11677篇
  2008年   12902篇
  2007年   14345篇
  2006年   13698篇
  2005年   11825篇
  2004年   9997篇
  2003年   7866篇
  2002年   6009篇
  2001年   4573篇
  2000年   3840篇
  1999年   3230篇
  1998年   2706篇
  1997年   2187篇
  1996年   1712篇
  1995年   1437篇
  1994年   1267篇
  1993年   919篇
  1992年   743篇
  1991年   605篇
  1990年   508篇
  1989年   377篇
  1988年   291篇
  1987年   182篇
  1986年   174篇
  1985年   229篇
  1984年   198篇
  1983年   140篇
  1982年   193篇
  1981年   96篇
  1980年   95篇
  1979年   23篇
  1978年   15篇
  1977年   23篇
  1976年   14篇
  1959年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The swelling kinetics curves of structurally defined poly(acrylic acid) hydrogel in bidistilled water at temperatures: 25, 30, 35, 40, and 45°C were determined. The possibility of kinetically explaining the isothermal swelling process by applying the following models: reaction controlled by diffusion, first order chemical reaction kinetics, and second order chemical reaction kinetics, was investigated. It was found that kinetically explaining the swelling process using these methods was limited to only certain parts of the process. The swelling process in bidistilled water was described in full range assuming that the hydrogel's swelling rate was a kinetically controlled reaction by the rate of the movement of reactive interface of hydrogel. Based on that model, the kinetic parameters, activation energy (Ea) and preexponential factor (A), of the swelling process were determined to be Ea = 35 kJ/mol and lnA = 8.6. A possible mechanism of the investigated swelling process was discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
992.
Thermoforming (free blowing) of poly(ethylene terephthalate) preforms was successfully and quickly performed in a rotating system designed for dielectric hysteresis heating. Temperature profile modeling was carried out with the amorphous poly(ethylene terephthalate) permittivity at different temperatures. The Maxwell and heat equations were used to determine the best profile and power tuning. The determination of the theoretical boundary conditions was accomplished by the adjustment of the numerical transient external surface wall temperature with experimental infrared pyrometry results. In comparison with infrared, microwaves allowed high power density absorption inside the perform wall without a dramatic temperature gradient. Consequently, the heat blowing stage could be accelerated, and the process took at least 5 times less energy than infrared heating. Industrial applications involve the integration of the molding step and the design of the overall process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
993.
Porous poly(vinyl alcohol) (PVA) membranes were prepared by a phase‐inversion method. The influence of chemical crosslinking and heat treatments on the swelling degree, resistance to compaction, mechanical strength, and morphology of porous PVA membranes was extensively studied. The crosslinking degree and crystallinity of the membranes, calculated from IR spectra, increased with the treatment time. The porosity, calculated on the basis of swelling experiments, showed a decreasing trend for heat‐treated membranes but remained almost at a constant value for crosslinked membranes. Such a change was further proved with scanning electron microscopy pictures. The behavior was explained by the rearrangement of PVA chains during the heat‐treatment process, which led to morphological changes in the membranes. The mechanical properties of the porous membranes in dry and wet states were measured, and a great difference was observed between crosslinked and heat‐treated membranes in the dry and wet states. The crosslinked membranes showed good mechanical properties in the dry state but became fragile in the wet state. On the contrary, the heat‐treated membranes were more flexible in the wet state than in the dry state. This change was explained by the turnaround of inner stress in the systems during the swelling process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
994.
Poly(ethylene oxide) (PEO) oligomers are employed extensively in pharmaceutical and biomedical arenas mainly due to their excellent physical and biological properties, including solubility in water and organic solvents, lack of toxicity, and absence of immunogenicity. PEO can be chemically modified and reacted with, or adsorbed onto, other molecules and surfaces. Sophisticated applications for PEO have increased the demand for PEO oligomers with tailored functionalities, and heterobifunctional PEOs are often needed. This review discusses the synthesis and applications of heterobifunctional PEO oligomers possessing amine, carboxylate, thiol, and maleimide functional groups.  相似文献   
995.
Ri-Chao Zhang  Yi Xu  Ai Lu  Kemei Cheng  Yigang Huang  Zhong-Ming Li   《Polymer》2008,49(10):2604-2613
The crystalline morphology of poly(phenylene sulfide) (PPS) isothermally crystallized from the melt under shear has been observed by polarized optical microscope (POM) equipped with a CSS450 hot-stage. The shish–kebab-like fibrillar crystal structure is formed at a higher shear rate or for a longer shear time, which is ascribed to the tight aggregation of numerous oriented nuclei in the direction of shear. The crystallization induction time of PPS decreases with the shear time, indicating that the shear accelerates the formation of stable crystal nuclei. Under shear, the increase of spherulite growth rate results from highly oriented chains. The melting behavior of shear-induced crystallized PPS performed by differential scanning calorimetry (DSC) shows multiple melting peaks. The lower melting peak corresponds to melting of imperfect crystal, and the degree of crystal perfection decreases as the shear rate increases. The higher melting peak is related to the orientation of molecular chains. These oriented molecular chains form the orientation nuclei which have higher thermal stability than the kebab-like lamellae that are developed later. A new model based on the above observation has been proposed to explain the mechanism of shish–kebab-like fibrillar crystal formation under shear flow.  相似文献   
996.
The nonisothermal crystallization kinetics of a metallocene-made isotactic polypropylene (m-iPP) and its compounds with 0.1 wt % and 0.3 wt % of a sorbitol derivative [1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol (DMDBS); an α nucleator] were investigated by differential scanning calorimetry at different cooling rates from the melt. The nucleation efficiency was proved by a significant increase in the crystallization temperatures (accompanied by a slight augmentation of the degree of crystallinity and a decrease in the crystal sizes). This increase in the crystallization temperatures led to higher amounts of fractional content in the γ polymorph, even though DMDBS was supposed to be a nucleator for the α form. The Avrami and Ozawa methods effectively described only the early stage of crystallization, whereas a combined Avrami–Ozawa method was valid for the whole crystallization process. The values of the exponent for this method decreased for nucleated samples in the later stage of crystallization, especially in the case of m-iPP with 0.3 wt % DMDBS added (m-iPP03). The activation energy of the process and the surface free energy were also estimated. The production of considerable proportions of the γ polymorph in m-iPP03 corresponded to higher values of the activation energy and lower values of the surface free energy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
997.
Wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and wear‐particle‐induced osteolysis and bone resorption are the major factors causing the failure of total joint replacements. It is feasible to improve the lubrication and reduce the wear of artificial joints. We need further understanding of the lubrication mechanism of the synovial fluid. The objective of this study is to evaluate the lubricating ability of three major components in the synovial fluid: albumin, globulin, and phospholipids. An accelerated wear testing procedure in which UHMWPE is rubbed against a microfabricated surface with controlled asperities has been developed to evaluate the lubrication behavior. An analysis of the wear particle dimensions and wear amount of the tests has provided insights for comparing their lubrication performance. It is concluded that the presence of biomolecules at the articulating interface may reduce friction. A higher concentration of a biological lubricant leads to a decrease in the wear particle width. In addition, in combination with the wear results and mechanical analysis, the roles of individual biomolecules contributing to friction and wear at the articulating interface are discussed. These results can help us to identify the role of the biomolecules in the boundary lubrication of artificial joints, and further development of lubricating additives for artificial joints may be feasible. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
998.
Changes in thermomechanical behavior with structural relaxation taking place in epoxy glasses were studied. Differential scanning calorimetry measurements and thermostimulated strain recovery tests were performed for specimens deformed and then aged under fixed strain. In the course of heating, the specimens started to absorb thermal energy, whereas plastic strain was still stable. At higher temperatures, plastic strain started recovery, which was accompanied by exothermic behavior of the specimen. With an increase in the aging duration, the endothermic peak signified and moved to a higher temperature. These results indicated that the longer the aging duration was, the harder the plastic strain and strain energy were frozen in the glassy structure. This freeze‐strain phenomenon was observed for crosslinked epoxy glass, as well as polymeric glasses with linear molecular structures, aged under strain. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
999.
An effective two-stage method has been developed for imparting antimicrobial properties to regular polyethylene terephthalate (R-PET), polyethylene glycol modified polyethylene terephthalate (PEG-M-PET), R-PET/Cotton blend (R-PET/C) and PEG-M-PET/Cotton blend (PEG-M-PET/C) fabrics. The method consists of partial hydrolysis of the fabrics to create carboxylic groups in PET macromolecules followed by subsequent reaction with dimethylalkylbenzyl ammonium chloride (DMABAC) under alkaline conditions. The reaction conditions such as pH, reaction temperature and time, carboxylic content, and DMABAC concentration were studied. Characterization of the finished fabrics was carried out through scanning electron microscopy (SEM) and Fourier transform infrared spectra (FTIR). All the modified PET fabrics showed excellent antibacterial activity towards Gram-positive (Bacillus mycoides), Gram-negative (Escherichia coli), and nonfilamentous fungus (Candida albicans). The achieved antimicrobial functions on the PET fabrics are durable in repeated laundering processes. Even after laundering 10 times the fabrics could still provide more than 85% of its antimicrobial activity against B. mycoides, E. coli, and C. albicans. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
1000.
The drawability of iodinated at solution before casting (IBC) polyvinyl alcohol films prepared by casting aqueous solutions of 10 wt % PVA containing 15.2, 39.8, 83.2, 117.0, and 140.1% was examined with a tensile tester at 20–60°C. The tensile behavior of IBC films showed that the yield and breaking loads were much lower, and the breaking elongation was even higher than those of the unoriented iodinated after casting (IAC) films as well as the untreated PVA films. The maximum draw ratios of the films with the weight gain of 15.2, 39.8, 83.2, 117, and 140.1% were 4.5, 5.5, 8.5, 8.0, and 7.5, respectively, which were achieved at 20°C in all. The crystallinity of all films increased by the maximum draw, regardless of crystallinity before drawing. The crystalline structure was recovered to the original PVA crystalline lattice by deiodination. Amorphous orientation and initial moduli increased with the maximum draw ratio, while the orientation of crystals was constant. The orientation and moduli increased up to the weight gain of 83.2%, whose highest draw ratio and initial modulus were 8.5 and of 7.1 GPa, respectively, and then decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号