首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   13篇
  国内免费   7篇
电工技术   6篇
综合类   16篇
化学工业   289篇
金属工艺   14篇
机械仪表   76篇
建筑科学   77篇
矿业工程   9篇
能源动力   168篇
轻工业   7篇
水利工程   18篇
石油天然气   8篇
武器工业   3篇
无线电   14篇
一般工业技术   48篇
冶金工业   147篇
原子能技术   29篇
自动化技术   59篇
  2023年   8篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   21篇
  2015年   11篇
  2014年   47篇
  2013年   53篇
  2012年   28篇
  2011年   95篇
  2010年   57篇
  2009年   73篇
  2008年   79篇
  2007年   71篇
  2006年   64篇
  2005年   54篇
  2004年   58篇
  2003年   38篇
  2002年   37篇
  2001年   10篇
  2000年   10篇
  1999年   16篇
  1998年   15篇
  1997年   15篇
  1996年   10篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
排序方式: 共有988条查询结果,搜索用时 187 毫秒
111.
The breakage of liquid-liquid, solid-liquid and solid-gas dispersions occurs in many industrial processes during the transport of particulate materials. In this work, breakage of whey protein precipitates passing through a capillary pipe is examined and an experimentally derived breakage frequency is applied to construct a suitable population balance model to characterize the breakage process. It has been shown that the breakage frequency of precipitate particles is highly dependent on their shear history and on the turbulent energy dissipation rate in the pipe. The population balance equation (PBE) uses a volume density based discrete method which is adapted from mass density based discretization. In addition to comparing the model with experimental data, predicted results at different velocities are presented. It was found that the population balance breakage model provides satisfactory results in terms of predicting particle size distributions for such processes.  相似文献   
112.
Radial distributions of void fraction αG, bubble aspect ratio E, phasic velocities VG and VL and turbulent kinetic energy k in bubbly pipe flows are measured using an image processing method and a laser Doppler velocimetry. Multi-fluid simulations are conducted to examine applicability of state-of-the-art closure relations to the turbulent bubbly pipe flows. The experimental results indicate that aspect ratio of bubbles in the near wall region takes a higher value than that of free rising bubbles due to the presence of wall, and that the change in the aspect ratio induces decrease in relative velocity between bubbles and liquid in the near wall region. Drag coefficient CD of a bubble in a bubbly pipe flow tends to increase with magnitude of shear flow, and the effect of shear flow on CD is estimated by the correlation proposed by Legendre and Magnaudet (1998). Comparison between the simulated and the measured results indicate that the effects of bubble shape and shear flow on drag force acting on bubbles should be taken into account for accurate predictions of bubbly pipe flows. The turbulence models proposed by Lopez de Bertodano et al. (1994) and by Hosokawa and Tomiyama (2004a) give good predictions for turbulence modification caused by bubbles.  相似文献   
113.
114.
Natural habitats are created and developed through pool-riffle sequences in rivers, while vegetation cover could play a critical role in the sediment transfer and its quantity and quality. In this study, the effect of vegetation cover on the flow structure in a pool-riffle sequence is investigated in a laboratory flume under bed formation to compare with non-vegetated cover. In this context, instantaneous point velocities were measured by ADV to determine averaged velocity, shear velocity, root mean square velocity, friction factor, Reynolds shear stress and turbulence intensities. Results showed that the vegetation cover increases the thickness of the wall law. Meanwhile, the length of the flow separation zone in the vegetated bedform is more than in the non-vegetated bedform. Variation in roughness coefficients may cause a new boundary layer in which local flow velocities decrease. In both cases (vegetated and non-vegetated bedforms), the momentum is mostly transferred by ejection and sweep phenomena between flow and bedform.  相似文献   
115.
116.
We demonstrate the use of high frequency data (HFD) to reproduce the power spectrum shown by Van der Hoven in 1957. His work represents the basis of wind energy standards such as averaging and variability in the frequency domain. Our results unveil discrepancies with Van der Hoven's approach, which can be related to constraints in the computing capabilities in the 1950's. We show a major eddy-energy peak at a period of 2 days and a smaller eddy-energy peak contribution at frequencies higher than the region known as the spectrum gap. The variance calculated by the area under the curve indicated that the spectral energy is mainly due to the Power Spectral Density (PSD) values located in the microscale region. We calculated the economic value of this energy based on the turbulence kinetic energy of the wind data set. We also conclude that, given the results of the present study, HFD analysis in the frequency domain uncover eddy energy peaks that determine energy fluctuations in the short and long terms. This information is lost every time data are erased from current monitoring systems.  相似文献   
117.
The purpose of this paper is to investigate the effects of slits and swirl vanes on the turbulence augmentation in the flow fields of a gun-type gas burner using an X-type hot-wire probe. The gun-type gas burner adopted in this study is composed of eight slits and swirl vanes located on the surface of an inclined baffle plate. Experiment was carried out at a flow rate of 450 //min in burner model installed in the test section of subsonic wind tunnel. Swirl vanes play a role diffusing main flow more remarkably toward the radial direction than axial one, but slits show a reverse feature. Consequently, both slits and swirl vanes remarkably increase turbulence intensity in the whole range of a gun-type gas burner with a cone-type baffle plate.  相似文献   
118.
冲击射流及其强化换热的研究进展   总被引:3,自引:0,他引:3  
介绍了冲击射流的特点,对国内外冲击射流换热的实验研究和数值模拟研究的发展和现状进行了较为详细的综合论述。  相似文献   
119.
The well completion process in oil and gas industry,aiming to build effective exploitation,is divided into acidizing and formation water production process.Oxide scale(OS)formed on the inner wall of the HP-13Cr stainless steel tubes during the hot extrusion process changes the surface roughness.The effects of OS on the corrosion of HP-13Cr stainless steel during well completion process were studied by corrosion measurement,spectra analysis,microscopic observation and numerical simulation.The results indicate that the OS make no change of phase distribution and element composition of corrosion scale,while the increasing OS roughness is the dominant factor for accelerating corrosion rate during the well completion process.In acidizing process,the greater surface roughness OS of HP-13Cr stainless steel increases the corrosion rate obviously due to a larger interfacial area in contact with the aggressive environment.During subsequent formation water production process,the turbulence eddy,formed at locations characterized with greater surface roughness OS,can deteriorate the corrosion scale and accelerate the mass transfer of the corrosive species,resulting in more serious corrosion.  相似文献   
120.
Computational fluid dynamics (CFD) as a simulation tool allows obtaining a more complete view of the fluid flow and heat transfer mechanisms in packed bed reactors, through the resolution of 3D Reynolds averaged transport equations, together with a turbulence model when needed. This tool allows obtaining mean velocity and temperature values as well as their fluctuations at any point of the bed. An important problem when a CFD modeling is performed for turbulent flow in a packed bed reactor is to decide which turbulence model is the most accurate for this situation. Turbulence models based on the assumption of a scalar eddy viscosity for computing the turbulence stresses, so-called eddy viscosity models (EVM), seem insufficient in this case due to the big flow complexity. The use of models based on transport equations for the turbulence stresses, so-called second order closure modeling or Reynolds stress modeling (RSM), could be a better option in this case, because these models capture more of the involved physics in this kind of flow.To gain insight into this subject, a comparison between the performance in flow and heat transfer estimation of RSM and EVM turbulence models was conducted in a packed bed by solving the 3D Reynolds averaged momentum and energy equations. Several setups were defined and then computed. Thus, the numerical pressure drop, velocity, and thermal fields within the bed were obtained. In order to judge the capabilities of these turbulence models, the Nusselt number (Nu) was computed from numerical data as well as the pressure drop. Then, they were compared with commonly used correlations for parameter estimations in packed bed reactors. The numerical results obtained show that RSM give similar results as EVM for the cases checked, but with a considerably larger computational effort. This fact suggests that for this application, even though the RSM goes further into the flow physics, this does not lead to a relevant improvement in parameter estimation when compared to the performance of EVM models used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号