首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27285篇
  免费   1952篇
  国内免费   1157篇
电工技术   1831篇
技术理论   1篇
综合类   1294篇
化学工业   5641篇
金属工艺   919篇
机械仪表   1282篇
建筑科学   1269篇
矿业工程   253篇
能源动力   8696篇
轻工业   400篇
水利工程   304篇
石油天然气   2112篇
武器工业   585篇
无线电   650篇
一般工业技术   1552篇
冶金工业   844篇
原子能技术   1524篇
自动化技术   1237篇
  2024年   86篇
  2023年   505篇
  2022年   866篇
  2021年   1024篇
  2020年   1070篇
  2019年   965篇
  2018年   806篇
  2017年   912篇
  2016年   883篇
  2015年   807篇
  2014年   1734篇
  2013年   1958篇
  2012年   1827篇
  2011年   2546篇
  2010年   1889篇
  2009年   1682篇
  2008年   1524篇
  2007年   1654篇
  2006年   1390篇
  2005年   1042篇
  2004年   991篇
  2003年   752篇
  2002年   694篇
  2001年   595篇
  2000年   466篇
  1999年   358篇
  1998年   257篇
  1997年   251篇
  1996年   183篇
  1995年   131篇
  1994年   109篇
  1993年   81篇
  1992年   75篇
  1991年   47篇
  1990年   32篇
  1989年   28篇
  1988年   23篇
  1987年   24篇
  1986年   15篇
  1985年   17篇
  1984年   16篇
  1983年   11篇
  1982年   15篇
  1980年   10篇
  1979年   3篇
  1959年   12篇
  1957年   2篇
  1956年   3篇
  1955年   3篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
41.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
42.
The chromium (Cr) evaporation behavior of several different types of iron (Fe)-based AFA alloys and benchmark Cr2O3-forming Fe-based 310 and Ni-based 625 alloys was investigated for 500 h exposures at 800 °C to 900 °C in air with 10% H2O. The Cr evaporation rates from alumina-forming austenitic (AFA) alloys were ~5 to 35 times lower than that of the Cr2O3-forming alloys depending on alloy and temperature. The Cr evaporation behavior was correlated with extensive characterization of the chemistry and microstructure of the oxide scales, which also revealed a degree of quartz tube Si contamination during the test. Long-term oxidation kinetics were also assessed at 800 to 1000 °C for up to 10,000 h in air with 10% H2O to provide further guidance for SOFC BOP component alloy selection.  相似文献   
43.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
44.
《Ceramics International》2022,48(8):11304-11312
Li13.9Sr0.1Zn(GeO4+δ)4 (LSZG) materials can exhibit proton conduction by Li+/H+ ion exchange in hydrogen atmosphere. It can be used in solid oxide fuel cells (SOFCs) as an electrolyte. In this study, In3+ doped LSZG powders are synthesized by sol-gel method. X-ray diffraction, scanning electron microscopy, thermal gravimetric analyzer, and electrochemical impedance spectroscopy are used to investigate the effects of In doping on LSZG. All Li13.9-xInxSr0.1Zn(GeO4+δ)4 (LISZG, 0 ≤ x ≤ 0.3) ceramics exhibit the same phase with LSZG. The dopant of In promotes the sintering activity and Li+/H+ ion exchange rate of LSZG. The optimum doping of In is x = 0.2. At 600 °C, Li13.7In0.2Sr0.1Zn(GeO4+δ)4 (0.2LISZG) shows a proton conductivity of 0.094 S/cm under 0.9 V direct current bias voltage. In addition, the single cell based on 0.2LISZG electrolyte is prepared, and it has been demonstrated that the practical utilization of 0.2LISZG in IT-SOFCs is feasible.  相似文献   
45.
Stunting adversely affects physical and mental outcomes of children. It has not been examined whether household air pollution from solid fuel combustion is a risk factor for stunting in children. In a total of 41,439 children aged 6-17 across China, height was measured using a unified protocol. Multivariable linear regression models and logistic regression models were used to assess the associations of solid fuel use for cooking/heating with stunting in children. Adjusted for covariates, cooking/heating with solid fuel was significantly associated with a lower z-score for height for age and sex (β = −0.21 [−0.32 to −0.09] and −0.17 [−0.31 to −0.03], respectively) and an increased risk of stunting with an estimated ORs of 1.34 [1.07~1.68] and 1.37 [1.02~1.83], respectively. The risk of stunting associated with solid fuel use was statistically significant in high-age children. And the effect was greater on girls than on boys, though the difference was not statistically significant. Our study suggested that Chinese children living in households using solid fuel had a significantly higher risk of stunting than those living in households using cleaner fuel.  相似文献   
46.
47.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   
48.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
49.
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).  相似文献   
50.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号