首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4565篇
  免费   719篇
  国内免费   134篇
电工技术   44篇
综合类   399篇
化学工业   1194篇
金属工艺   248篇
机械仪表   601篇
建筑科学   437篇
矿业工程   68篇
能源动力   163篇
轻工业   91篇
水利工程   109篇
石油天然气   71篇
武器工业   29篇
无线电   334篇
一般工业技术   798篇
冶金工业   55篇
原子能技术   31篇
自动化技术   746篇
  2024年   23篇
  2023年   89篇
  2022年   59篇
  2021年   187篇
  2020年   182篇
  2019年   132篇
  2018年   160篇
  2017年   151篇
  2016年   217篇
  2015年   254篇
  2014年   290篇
  2013年   297篇
  2012年   227篇
  2011年   284篇
  2010年   223篇
  2009年   251篇
  2008年   212篇
  2007年   272篇
  2006年   240篇
  2005年   237篇
  2004年   195篇
  2003年   175篇
  2002年   164篇
  2001年   119篇
  2000年   114篇
  1999年   95篇
  1998年   78篇
  1997年   79篇
  1996年   72篇
  1995年   46篇
  1994年   37篇
  1993年   41篇
  1992年   42篇
  1991年   25篇
  1990年   30篇
  1989年   15篇
  1988年   25篇
  1987年   7篇
  1986年   10篇
  1985年   20篇
  1984年   15篇
  1983年   7篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1957年   1篇
排序方式: 共有5418条查询结果,搜索用时 15 毫秒
121.
本文基于光束传播法(beam propagation method, BPM)和时域有限差分法(finite difference time domain method, FDTD)建立了分析模型,模拟并分析了弯曲脊形波导超辐射发光二极管(superluminescent light emitting diode, SLD)不同结构参数(刻蚀深度、曲率半径、脊形宽度)对波导损耗的影响和倾斜脊形波导不同结构参数(刻蚀深度、脊形宽度、倾斜角度、发射波长)对模式反射率的影响。计算表明,弯曲脊形波导的刻蚀深度和曲率半径是影响波导损耗的重要因素。刻蚀深度较浅使波导对光场的限制作用较弱,过小的曲率半径会使模式传输泄露严重,损耗大大增加。脊形宽度越大,波导损耗越小,其对波导损耗影响较小。脊形波导的端面倾斜角度是抑制模式反射率的重要因素,脊形宽度增加,模式反射率逐渐减小,并在特定的几个角度形成的奇点达到最小值。刻蚀深度对于模式反射率的影响作用较小,但随着刻蚀深度的增加,奇点发生的角度产生了向小角度偏移。在特定的倾斜角度范围内,随着波长减小,奇点的数目会逐渐增加。研究结果可对设计具有优越性能的SLD器件...  相似文献   
122.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   
123.
Treating bacterial biofilm infections on implanted materials remains challenging in clinical practice, as bacteria can be resistant by weakening the host defense from immune cells like macrophages. Herein, a metal-piezoelectric hetero-nanostructure with mechanical energy-driven antimicrobial property is in situ constructed on the Ti implant. Under ultrasonic irradiation, the formed piezotronic Ti (piezoTi) can promote the generation of reactive oxygen species (ROS) by facilitating local charge transfer at the surface, thus leading to piezodynamic killing of Staphylococcus aureus (S. aureus) while downregulating biofilm-forming genes. In addition, the stimulated macrophages on piezoTi display potent phagocytosis and anti-bacterial activity through the activation of PI3K-AKT and MAPK pathway. As a demonstration, one-time ultrasound irradiation of piezoTi pillar implanted in an osteomyelitis model efficiently eliminates the S. aureus biofilm infection and rescues the implant with enhanced osteointegration. By the synergistic effect of ultrasound-driven piezodynamic therapy and immuno-regulation, the proposed piezoelectric nanostructured surface can endow Ti implants with highly efficient antibacterial performance in an antibiotic-free, noninvasive, and on-demand manner.  相似文献   
124.
Conventional power sources encounter difficulties in achieving structural unitization with complex-shaped electronic devices because of their fixed form factors. Here, it is realized that an on-demand conformal Zn-ion battery (ZIB) on non-developable surfaces uses direct ink writing (DIW)-based nonplanar 3D printing. First, ZIB component (manganese oxide-based cathode, Zn powder-based anode, and UV-curable gel composite electrolyte) inks are designed to regulate their colloidal interactions to fulfill the rheological requirements of nonplanar 3D printing, and establish bi-percolating ion/electron conduction pathways, thereby enabling geometrical synchronization with non-developable surfaces, and ensuring reliable electrochemical performance. The ZIB component inks are conformally printed on arbitrary curvilinear substrates to produce embodied ZIBs that can be seamlessly integrated with complicated 3D objects (including human ears). The conformal ZIB exhibits a high fill factor (i.e., areal coverage of cells on underlying substrates, ≈100%) that ensures high volumetric energy density (50.5 mWh cmcell−3), which exceeds those of previously-reported shape-adaptable power sources.  相似文献   
125.
Surfaces enabling directional liquid transportation are of great interest for a wide range of applications such as water collection, microfluidics, and heat transfer systems. Surfaces capable of lossless, long-range passive transportation of low surface tension (LST) liquids using wettability patterned, liquidlike coatings with minimal contact angle hysteresis are reported. Lossless LST droplet travel distances over 150 mm are achieved, enabled by a two-phase transportation mechanism: morphological transformation from a bulge to a channel shape, followed by directional transportation along the asymmetrical wedge-shaped channel. The developed surfaces can split, merge, and precisely transport various low-surface tension liquids, including alcohols, alkanes, and solvents. The developed transportation strategy can also enhance LST liquid dropwise condensation through continuous removal of the condensate, even on horizontally positioned surfaces without the assistance of gravity.  相似文献   
126.
This work demonstrates in practical terms the evolutionary concepts and computational applications of Parametric Curves. Specific cases were drawn from higher order parametric Bezier curves of degrees 2 and above. Bezier curves find real life applications in diverse areas of Engineering and Computer Science, such as computer graphics, robotics, animations, virtual reality, among others. Some of the evolutionary issues explored in this work are in the areas of parametric equations derivations, proof of related theorems, first and second order calculus related computations, among others. A Practical case is demonstrated using a graphical design, physical hand sketching, and programmatic implementation of two opposite-faced handless cups, all evolved using quadratic Bezier curves. The actual drawing was realized using web graphics canvas programming based on HTML 5 and JavaScript. This work will no doubt find relevance in computational researches in the areas of graphics, web programming, automated theorem proofs, robotic motions, among others.  相似文献   
127.
Controllable assembly of molecular motors on solid surfaces is a fundamental issue for providing them to perform physical tasks. However, it can hardly be achieved by most previous methods due to their inherent limitations. Here, a general strategy is designed for the reprogrammable assembly of molecular motors on solid surfaces based on dynamic bonds. In this method, molecular motors with disulfide bonds can be remotely, reversibly, and precisely attached to solid surfaces with disulfide bonds, regardless of their chemical composition and microstructure. More importantly, it not only allows encoding geometric information referring to a pattern of molecular motors, but also enables erasing and re‐encoding of geometric information via hemolytic photocleavage and recombination of disulfide bonds. Thus, solid surfaces can be regarded as “computer hardware”, where molecular motors can be reformatted and reprogramed as geometric information.  相似文献   
128.
A framework to validate and generate curved nodal high‐order meshes on Computer‐Aided Design (CAD) surfaces is presented. The proposed framework is of major interest to generate meshes suitable for thin‐shell and 3D finite element analysis with unstructured high‐order methods. First, we define a distortion (quality) measure for high‐order meshes on parameterized surfaces that we prove to be independent of the surface parameterization. Second, we derive a smoothing and untangling procedure based on the minimization of a regularization of the proposed distortion measure. The minimization is performed in terms of the parametric coordinates of the nodes to enforce that the nodes slide on the surfaces. Moreover, the proposed algorithm repairs invalid curved meshes (untangling), deals with arbitrary polynomial degrees (high‐order), and handles with low‐quality CAD parameterizations (independence of parameterization). Third, we use the optimization procedure to generate curved nodal high‐order surface meshes by means of an a posteriori approach. Given a linear mesh, we increase the polynomial degree of the elements, curve them to match the geometry, and optimize the location of the nodes to ensure mesh validity. Finally, we present several examples to demonstrate the features of the optimization procedure, and to illustrate the surface mesh generation process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
129.
130.
Herein, a simple self‐assembly method is proposed for the fabrication of MoO2‐based superhydrophobic material with record high contact angles (contact angle up to about 173°) for conductive metal oxides on hard/soft substrates. The spin‐coated surface demonstrates excellent oil–water separation efficiency (>98%) after 50 cycles and robust corrosion resistance after immersion into different pH solutions for 20 d. These water‐resistant coatings retain excellent superhydrophobicity after oil immersion, knife‐scratch, and long‐cycle sandpaper abrasion, which is not observed on most artificial surfaces. Meanwhile, the functionality switching from superhydrophobicity to supercapacity, which have an inverse relationship in aqueous solutions because of poor electrode wettability, is achieved simply by editing the raw materials source. Tuning of the raw materials leads to the same product MoO2/graphitic carbon with different morphologies and functionalities. Different from superhydrophobic MoO2/carbon ball flowers, MoO2 nanotubes with carbon exhibit excellent supercapacity with a large gravimetric capacitance and great cycling stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号