首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4574篇
  免费   492篇
  国内免费   181篇
电工技术   163篇
综合类   242篇
化学工业   1527篇
金属工艺   183篇
机械仪表   92篇
建筑科学   69篇
矿业工程   32篇
能源动力   95篇
轻工业   587篇
水利工程   2篇
石油天然气   44篇
武器工业   29篇
无线电   632篇
一般工业技术   1349篇
冶金工业   64篇
原子能技术   7篇
自动化技术   130篇
  2024年   41篇
  2023年   135篇
  2022年   138篇
  2021年   176篇
  2020年   174篇
  2019年   159篇
  2018年   180篇
  2017年   174篇
  2016年   188篇
  2015年   178篇
  2014年   259篇
  2013年   244篇
  2012年   350篇
  2011年   331篇
  2010年   234篇
  2009年   290篇
  2008年   219篇
  2007年   253篇
  2006年   270篇
  2005年   242篇
  2004年   189篇
  2003年   139篇
  2002年   140篇
  2001年   79篇
  2000年   99篇
  1999年   70篇
  1998年   82篇
  1997年   58篇
  1996年   48篇
  1995年   40篇
  1994年   20篇
  1993年   16篇
  1992年   14篇
  1991年   9篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有5247条查询结果,搜索用时 15 毫秒
71.
以三元乙丙橡胶(EPDM)/氮化硼(BN)复合材料为母料,通过熔融共混EPDM/BN复合材料与聚乙烯(PE)、聚丙烯(PP),制备PE/PP/EPDM/BN复合材料。采用PE∶PP的比例为5∶5,以使复合材料形成共连续结构;通过EPDM包裹BN的方法,实现BN在PE/PP/EPDM/BN复合材料共连续结构的相界面处分布,以形成导热通路,从而提高PE/PP/EPDM/BN复合材料的导热性能。通过接触角测试和扩散系数公式计算预测了EPDM会选择性分布在PE/PP/EPDM复合材料共连续结构的相界面处。通过连续度计算结果得出,EPDM为PE和PP总质量的15%时,EPDM的连续度为85.3%。由扫描电子显微镜分析表明EPDM在PE/PP/EPDM/BN复合材料中连续贯通。由导热测试分析知,随着BN含量的增加,PE/PP/EPDM/BN复合材料的热导率逐渐增加。这项研究提高了PE/PP复合材料的热导率,此材料在电子工业中可能具有潜在应用。  相似文献   
72.
坐姿不良与许多疾病密切相关,而坐姿体压分布不平衡和一些腰椎疾病的发生有着相当大的联系。应用新型导电橡胶为传感材料,利用其力—电阻特性,研制64点阵式压电传感器型坐姿体压分布测量系统。应用本系统对1例正常人,3例患腰椎疾病者进行体压分布测量。实验结果表明:患腰椎疾病者的体压分布不平衡。证明系统的设计方案合理可行,能实现人体与座椅之间压力分布的动态、实时测量。  相似文献   
73.
炭黑/纳米Al2O3填充柔性压敏导电硅胶体系的研究   总被引:2,自引:0,他引:2  
基于柔性触觉传感器中用到的压敏导电硅橡胶,研究添加纳米Al2O3对导电硅橡胶电特性的影响.从理论上研究纳米Al2O3改性的微观和宏观机理,并通过实验对添加不同量纳米Al2O3的压敏导电硅橡胶导电性、室温下的导电稳定性、压阻特性进行比较分析.实验结果表明:在炭黑浓度恒定的压敏导电硅橡胶中适量添加纳米Al2O3,可有效提高复合材料的导电性,稳定性,增大复合材料的压力敏感范围.  相似文献   
74.
墨扩散效果的模拟是水墨画仿真的重要工作之一,在分析绘画材料特性和扩散形成机制的基础上,提出一个全新的基于遗传算法的墨扩散仿真模型系统.首先将笔迹和纸张离散化为笔元和纸元;其次借用遗传算法基本概念和原理,对给定的输入笔迹进行轮廓提取作为初始种群,通过种群个体间的选择、重组和变异等遗传活动模拟笔元的扩散过程;最后为了更好地模拟墨扩散方向,使用Ashikhmin算法合成各种宣纸的自然纹理,增强了真实感.实验结果表明,方法可以生成丰富的扩散效果,并且接近真实水墨画.  相似文献   
75.
设计了一种基于巨磁电阻(GMR)的新型电涡流探头及其检测实验系统,重点阐述了系统的工作原理、系统各部分所采用的关键技术及设计中需注意的问题,并对多层铝板试件进行了检测实验研究。实验结果表明:设计的GMR电涡流探头在多层导电结构深层缺陷检测时,与相应的线圈式探头相比,具有更高的灵敏度和更强的深层缺陷检测能力。  相似文献   
76.
Organic redox-active materials are promising electrode candidates for lithium-ion batteries by virtue of their designable structure and cost-effectiveness. However, their poor electrical conductivity and high solubility in organic electrolytes limit the device's performance and practical applications. Herein, the π-conjugated nitrogen-containing heteroaromatic molecule hexaazatriphenylene (HATN) is strategically embedded with redox-active centers in the skeleton of a Cu-based 2D conductive metal–organic framework (2D c-MOF) to optimize the lithium (Li) storage performance of organic electrodes, which delivers improved specific capacity (763 mAh g−1 at 300 mA g−1), long-term cycling stability (≈90% capacity retention after 600 cycles at 300 mA g−1), and excellent rate performance. The correlation of experimental and computational results confirms that this high Li storage performance derives from the maximum number of active sites (CN sites in the HATN unit and CO sites in the CuO4 unit), favorable electrical conductivity, and efficient mass transfer channels. This strategy of integrating multiple redox-active moieties into the 2D c-MOF opens up a new avenue for the design of high-performance electrode materials.  相似文献   
77.
A conductive engineered cardiac patch (ECP) can reconstruct the biomimetic regenerative microenvironment of an infarcted myocardium. Direct ink writing (DIW) and 3D printing can produce an ECP with precisely controlled microarchitectures. However, developing a printed ECP with high conductivity and flexibility for gapless attachment to conform to epicardial geometry remains a challenge. Herein, an asymmetrical DIW hydrophobic/hydrophilic membrane using heat-processed graphene oxide (GO) ink is developed. The “Masked spin coating” method is also developed that leads to a microscale GO (hydrophilic)/reduced GO (rGO, hydrophobic) physiological sensor, as well as a macroscale moisture-driven GO/rGO actuator. Depositing mussel-inspired polydopamine (PDA) coating on the one side of the DIW rGO , the ultrathin (approximately 500 nm) PDA-rGO (hydrophilic)/rGO (hydrophobic) microlattice (DrGOM) ECP is bestowed with the flexibility and moisture-responsive actuation that allows gapless attachment to the curved surface of the epicardium. Conformable DrGOM exhibits a promising therapeutic effect on rats' infarcted hearts through conductive microenvironment reconstruction and improved neovascularization.  相似文献   
78.
3D printed graphene aerogels hold promise for flexible sensing fields due to their flexibility, low density, conductivity, and piezo-resistivity. However, low printing accuracy/fidelity and stochastic porous networks have hindered both sensing performance and device miniaturization. Here, printable graphene oxide (GO) inks are formulated through modulating oxygen functional groups, which allows printing of self-standing 3D graphene oxide aerogel microlattice (GOAL) with an ultra-high printing resolution of 70 µm. The reduced GOAL (RGOAL) is then stuck onto the adhesive tape as a facile and large-scale strategy to adapt their functionalities into target applications. Benefiting from the printing resolution of 70 µm, RGOAL tape shows better performance and data readability when used as micro sensors and robot e-skin. By adjusting the molecular structure of GO, the research realizes regulation of rheological properties of GO hydrogel and the 3D printing of lightweight and ultra-precision RGOAL, improves the sensing accuracy of graphene aerogel electronic devices and realizes the device miniaturization, expanding the application of graphene aerogel devices to a broader field such as micro robots, which is beyond the reach of previous reports.  相似文献   
79.
3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one-part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)-silicone composite is developed and thoroughly characterized. The one-part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self-supporting and high-aspect-ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT-silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient-specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.  相似文献   
80.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号