首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60967篇
  免费   9194篇
  国内免费   5421篇
电工技术   7866篇
技术理论   2篇
综合类   6195篇
化学工业   5075篇
金属工艺   2169篇
机械仪表   6029篇
建筑科学   2802篇
矿业工程   2081篇
能源动力   3068篇
轻工业   3701篇
水利工程   1605篇
石油天然气   2711篇
武器工业   831篇
无线电   4816篇
一般工业技术   5431篇
冶金工业   1849篇
原子能技术   287篇
自动化技术   19064篇
  2024年   597篇
  2023年   1540篇
  2022年   2622篇
  2021年   2762篇
  2020年   3071篇
  2019年   2635篇
  2018年   2344篇
  2017年   2860篇
  2016年   3117篇
  2015年   3443篇
  2014年   4798篇
  2013年   4642篇
  2012年   5198篇
  2011年   5218篇
  2010年   3593篇
  2009年   3819篇
  2008年   3369篇
  2007年   3746篇
  2006年   3094篇
  2005年   2469篇
  2004年   1991篇
  2003年   1587篇
  2002年   1350篇
  2001年   1095篇
  2000年   901篇
  1999年   611篇
  1998年   592篇
  1997年   491篇
  1996年   395篇
  1995年   341篇
  1994年   274篇
  1993年   204篇
  1992年   180篇
  1991年   147篇
  1990年   124篇
  1989年   104篇
  1988年   64篇
  1987年   27篇
  1986年   25篇
  1985年   14篇
  1984年   16篇
  1983年   19篇
  1982年   18篇
  1981年   8篇
  1980年   15篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1975年   5篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Fault detection, isolation and optimal control have long been applied to industry. These techniques have proven various successful theoretical results and industrial applications. Fault diagnosis is considered as the merge of fault detection (that indicates if there is a fault) and fault isolation (that determines where the fault is), and it has important effects on the operation of complex dynamical systems specific to modern industry applications such as industrial electronics, business management systems, energy, and public sectors. Since the resources are always limited in real-world industrial applications, the solutions to optimally use them under various constraints are of high actuality. In this context, the optimal tuning of linear and nonlinear controllers is a systematic way to meet the performance specifications expressed as optimization problems that target the minimization of integral- or sum-type objective functions, where the tuning parameters of the controllers are the vector variables of the objective functions. The nature-inspired optimization algorithms give efficient solutions to such optimization problems. This paper presents an overview on recent developments in machine learning, data mining and evolving soft computing techniques for fault diagnosis and on nature-inspired optimal control. The generic theory is discussed along with illustrative industrial process applications that include a real liquid level control application, wind turbines and a nonlinear servo system. New research challenges with strong industrial impact are highlighted.  相似文献   
22.
The process of electrodeposition can be described in terms of a reaction-diffusion partial differential equation (PDE) system that models the dynamics of the morphology profile and the chemical composition. Here we fit such a model to the different patterns present in a range of electrodeposited and electrochemically modified alloys using PDE constrained optimization. Experiments with simulated data show how the parameter space of the model can be divided into zones corresponding to the different physical patterns by examining the structure of an appropriate cost function. We then use real data to demonstrate how numerical optimization of the cost function can allow the model to fit the rich variety of patterns arising in experiments. The computational technique developed provides a potential tool for tuning experimental parameters to produce desired patterns.  相似文献   
23.
Radiation therapy is a technology-driven cancer treatment modality that has experienced significant advances over the last decades, due to multidisciplinary contributions that include engineering and computing. Recent technological developments allow the use of noncoplanar volumetric modulated arc therapy (VMAT), one of the most recent photon treatment techniques, in clinical practice. In this work, an automated noncoplanar arc trajectory optimization framework designed in two modular phases is presented. First, a noncoplanar beam angle optimization algorithm is used to obtain a set of noncoplanar irradiation directions. Then, anchored in these directions, an optimization strategy is proposed to compute an optimal arc trajectory. The computational experiments considered a pool of twelve difficult head-and-neck tumor cases. It was possible to observe that, for some of these cases, the optimized noncoplanar arc trajectories led to significant treatment planning quality improvements, when compared with coplanar VMAT treatment plans. Although these experiments were done in a research environment treatment planning software (matRad), the conclusions can be of interest for a clinical setting: automated procedures can simplify the current treatment workflow, produce high-quality treatment plans, making better use of human resources and allowing for unbiased comparisons between different treatment techniques.  相似文献   
24.
Liu  Song  Cui  Yuan-Zhen  Zou  Nian-Jun  Zhu  Wen-Hao  Zhang  Dong  Wu  Wei-Guo 《计算机科学技术学报》2019,34(2):456-475
Journal of Computer Science and Technology - DOACROSS loops are significant parts in many important scientific and engineering applications, which are generally exploited pipeline/wave-front...  相似文献   
25.
Although topology optimization is established for linear static problems, more effort is required for solving nonlinear plastic problems. A new topology optimization approach with equivalent static loads (ESLs) is suggested to find the optimum topologies and locations of plastic hinges of thin-walled crash boxes by considering crash-induced deformation, the main crash energy-absorbing mechanism. Together with finite element method crashworthiness analyses, considering all nonlinearities with rate-dependent plasticity, the method was developed using an appropriate time-incremental scheme of ESLs without removing any high values of loads. Analyses show that the crash boxes with optimum topologies have energy-absorbing capabilities equivalent to the original structure. The proposed method is evaluated for two crashes: a crash box at low speed and a double cell subjected to high-speed collision. The results indicate that this method captures nonlinear crushing behaviours and accurate locations of plastic hinges where, if proper reinforcements are made, energy absorption can be enhanced.  相似文献   
26.
This study demonstrates the application of an improved Evolutionary optimization Algorithm (EA), titled Multi-Objective Complex Evolution Global Optimization Method with Principal Component Analysis and Crowding Distance Operator (MOSPD), for the hydropower reservoir operation of the Oroville–Thermalito Complex (OTC) – a crucial head-water resource for the California State Water Project (SWP). In the OTC's water-hydropower joint management study, the nonlinearity of hydropower generation and the reservoir's water elevation–storage relationship are explicitly formulated by polynomial function in order to closely match realistic situations and reduce linearization approximation errors. Comparison among different curve-fitting methods is conducted to understand the impact of the simplification of reservoir topography. In the optimization algorithm development, techniques of crowding distance and principal component analysis are implemented to improve the diversity and convergence of the optimal solutions towards and along the Pareto optimal set in the objective space. A comparative evaluation among the new algorithm MOSPD, the original Multi-Objective Complex Evolution Global Optimization Method (MOCOM), the Multi-Objective Differential Evolution method (MODE), the Multi-Objective Genetic Algorithm (MOGA), the Multi-Objective Simulated Annealing approach (MOSA), and the Multi-Objective Particle Swarm Optimization scheme (MOPSO) is conducted using the benchmark functions. The results show that best the MOSPD algorithm demonstrated the best and most consistent performance when compared with other algorithms on the test problems. The newly developed algorithm (MOSPD) is further applied to the OTC reservoir releasing problem during the snow melting season in 1998 (wet year), 2000 (normal year) and 2001 (dry year), in which the more spreading and converged non-dominated solutions of MOSPD provide decision makers with better operational alternatives for effectively and efficiently managing the OTC reservoirs in response to the different climates, especially drought, which has become more and more severe and frequent in California.  相似文献   
27.
WRESTORE (Watershed Restoration Using Spatio-Temporal Optimization of Resources) is a web-based, participatory planning tool that can be used to engage with watershed stakeholder communities, and involve them in using science-based, human-guided, interactive simulation–optimization methods for designing potential conservation practices on their landscape. The underlying optimization algorithms, process simulation models, and interfaces allow users to not only spatially optimize the locations and types of new conservation practices based on quantifiable goals estimated by the dynamic simulation models, but also to include their personal subjective and/or unquantifiable criteria in the location and design of these practices. In this paper, we describe the software, interfaces, and architecture of WRESTORE, provide scenarios for implementing the WRESTORE tool in a watershed community's planning process, and discuss considerations for future developments.  相似文献   
28.
29.
我国的军工科研所成立于上世纪,它以军工项目的科研、预研为主,为我国的国防军工提供研发产品。伴随着我国经济实力的增强和科技军事力量的增长,军工科研院所也转变了原有的工业专属性质,走上了军民两用、寓军于民的道路,并在时代的进步中成为了我国先进装备制造业的重要科研力量和科技创新支柱。凸现军事工业“高、精、尖”的特点,以项目管理的优化为具体策略进行军工科研开发工作。  相似文献   
30.
In modern cloud data centers, reconfigurable devices (FPGAs) are used as an alternative to Graphics Processing Units to accelerate data-intensive computations (e.g., machine learning, image and signal processing). Currently, FPGAs are configured to execute fixed workloads, repeatedly over long periods of time. This conflicts with the needs, proper to cloud computing, to flexibly allocate different workloads and to offer the use of physical devices to multiple users. This raises the need for novel, efficient FPGA scheduling algorithms that can decide execution orders close to the optimum in a short time. In this context, we propose a novel scheduling heuristic where groups of tasks that execute together are interposed by hardware reconfigurations. Our contribution is based on gathering tasks around a high-latency task that hides the latency of tasks, within the same group, that run in parallel and have shorter latencies. We evaluated our solution on a benchmark of 37500 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 47.4% of the cases. It produces acceptable solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 90.1% of the cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号