首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   114篇
  国内免费   11篇
综合类   16篇
化学工业   484篇
金属工艺   23篇
机械仪表   20篇
建筑科学   4篇
轻工业   151篇
石油天然气   1篇
武器工业   1篇
无线电   7篇
一般工业技术   176篇
冶金工业   10篇
原子能技术   1篇
自动化技术   3篇
  2024年   5篇
  2023年   10篇
  2022年   79篇
  2021年   114篇
  2020年   41篇
  2019年   61篇
  2018年   48篇
  2017年   48篇
  2016年   48篇
  2015年   32篇
  2014年   51篇
  2013年   64篇
  2012年   60篇
  2011年   53篇
  2010年   47篇
  2009年   34篇
  2008年   23篇
  2007年   21篇
  2006年   12篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1986年   3篇
  1982年   1篇
  1980年   1篇
排序方式: 共有897条查询结果,搜索用时 218 毫秒
151.
The aim of this work was to compare the effects of three commercially available gold nanoparticles (AuNPs) of different sizes (30, 50 and 90 nm) on the viability of normal human dermal fibroblasts (NHDF). In addition, we evaluated protective effect of N-Acetyl-L-cysteine (NAC), total glutathione content (GSH/GSSG), superoxide dismutase (SOD) activity and reactive oxygen species (ROS) production to investigate if oxidative stress was involved in the cytotoxic response of these AuNPs. Although AuNP-induced cytotoxicity was dose and time dependent, nanoparticle size slightly influenced the cytotoxic response of AuNPs assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase. Regarding oxidative parameters, NAC produced no significant protection of NHDF cells against treatment with any of the three AuNPs. Independently on nanoparticle size, GSH/GSSG content was drastically depleted after 24 h of incubation with the three AuNPs (less than 15% in all cases), while no statistically significant changes on SOD activity were reported (~90% of activity). The three AuNPs also caused a notable increase in the ROS production of NHDF cells. In conclusion, our data suggest that AuNP-induced cytotoxicity in NHDF is mediated by oxidative stress and it is independent of nanoparticle size.  相似文献   
152.
Concerns about the potential health hazards of nanomaterials are growing. To determine the potential toxicity of metal oxide nanoparticles, human SH-SY5Y neuroblastoma and H4 neuroglioma cells were exposed to Fe2O3, CuO and ZnO nanoparticles and their metal ion counterparts (Fe3+, Cu2+ and Zn2+) at a concentration range of 0.01–100 µM for 48 h, under the cell culture conditions: 95% O2, 5% CO2, 85% humidity, 37°C. Their ensemble cell viability was determined by MTS cell proliferation assay. A live/dead cell assay was also performed, and cellular images were acquired by a high-content fluorescence microscope and quantified by a novel computerised image analysis protocol. Our data indicated that exposure of these nanoparticles induced differential toxic effects in both SH-SY5Y and H4 cells, and the cells had dose-dependent toxic responses to the CuO nanoparticle insult. In conclusion, the toxic responses of the nanoparticles are complex, and they warrant further in vivo studies. However, it remains to be determined if these nanopartilces have synergistically enhancing or cancelling toxic effects upon both SH-SY5Y and H4 cells.  相似文献   
153.
采用微波辐射加热的方法,在水相中一步合成出高质量的谷胱甘肽修饰的Zn1-xCdxTe三元量子点,利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质。研究了不同反应条件(如反应时间、Cd2+/Zn2+投料比、反应温度、前驱体溶液pH值)对量子点荧光性能的影响。采用MTT法研究Zn1-xCdxTe三元量子点的细胞毒性,进一步将制备好的三元量子点与肌动蛋白抗体结合作为荧光探针初步应用于细胞标记。  相似文献   
154.
Fluorescent probes that emit in the near-infrared (NIR, 700–1,300 nm) region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs) have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH)-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs) were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell) QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4). The GSH-QDs (800 nm emission) were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer), and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM), the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIR-fluorescence imaging of a lymph node in a mouse is presented.  相似文献   
155.
Nanodiamonds that were prepared by high pressure/high temperature were functionalized with biomolecules for biological applications. Nanodiamonds (NDs, < or =35 nm) that were coated by silanization or with polyelectrolyte layers were grafted with a fluorescent thiolated peptide via a maleimido function; this led to an aqueous colloidal suspension that was stable for months. These substituted NDs were not cytotoxic for CHO cells. Their capacity to enter mammalian cells, and their localisation inside were ascertained after labelling the nucleus and actin, by examining the cells by confocal, reflected light and fluorescence microscopy.  相似文献   
156.
The cytotoxicities of highly efficient salan-Ti(IV) complexes toward a range of cell lines, including drug-resistant cells, are reported along with preliminary mechanistic insights. Five salan-Ti(IV) complexes were investigated toward eight different human and murine cancer-derived cell lines, including colon, ovarian, lung, cervical, pancreatic, leukemic, skin, and breast. The salan complexes are more active toward the cells analyzed than cisplatin and the known titanium compound (bzac)(2) Ti(OiPr)(2) , and no cell line resistant to the salan complexes was identified. Moreover, the salan-Ti(IV) complexes are highly active toward both cisplatin-sensitive (A2780) and cisplatin-resistant (A2780CisR) human ovarian cancer cell lines. Similarly, the salan complexes are cytotoxic toward multi-drug-resistant (ABCB1-expressing) mouse lymphoma cell lines HU-1 and HU-2. Importantly, minimal or no activity was observed toward primary murine cells (bone marrow, heart, liver, kidney, spleen, and lung), supporting selectivity for cancer cells. Additionally, the salan complexes maintain high cytotoxicity for up to 24 h following exposure to cell culture medium, whereas reference complexes (bzac)(2) Ti(OiPr)(2) and Cp(2) TiCl(2) rapidly lose much of their activity upon exposure to medium, within ~1 h. The upregulation of p53 followed by cell-cycle arrest in G(1) phase is likely one mechanism of action of the salan complexes. Taken together, the results indicate that these compounds are selectively toxic to cancer cells and are able to circumvent two independent mechanisms of drug resistance, thus expanding the scope of their potential medicinal utility.  相似文献   
157.
Dehydrated MCM-41 (S1) was functionalized under nitrogen with 3-chloropropyltriethoxysilane (CPTS) and 3-aminopropyltriethoxysilane (APTS) by grafting in toluene at 80 °C over 48 h to give the corresponding materials S2 and S3, respectively. Subsequently, S2 and S3 were suspended in methanol and reacted in a nitrogen atmosphere with betulinic acid (BA) for 48 h at 65 °C (in the presence of the triethylamine of S2) to give the BA-functionalized materials S4 and S5. All materials studied were characterized by powder X-ray diffraction, X-ray fluorescence, nitrogen gas sorption, multinuclear MAS NMR spectroscopy, thermogravimetry, UV spectroscopy, IR, SEM, and TEM. To study the release of BA, S4 and S5 were suspended in solutions simulating various body pH conditions (pH 7.4, 5.5, and 3.0). Results of the quantification of BA release by HPLC for S4 show a pH-dependent and very slow BA release following a logarithmic tendency, while S5 behaves differently, also pH-dependent but, in this case, fast release of BA which requires only days for total release of the therapeutic compound. In addition, the cytotoxic activity of all synthesized materials against various cancer cell lines was studied. The results show the absence of an antiproliferative effect on the surfaces without BA S1-S3, while an antiproliferative effect was observed with S4 and S5 and was attributed to the release of BA in the medium.  相似文献   
158.
Needles and noodles: Studying amyloid toxicity is important for understanding protein misfolding diseases. Using a luminescent conjugated polythiophene, we found that cell binding of nontoxic filamentous amyloids of insulin and β2-microglobulin was less efficient than that of toxic fibrillar amyloids; this suggests a correlation between amyloid toxicity and cell binding.  相似文献   
159.
New [PtCl(pz*NN)]n+ complexes anchored by pyrazolyl‐diamine (pz*NN) ligands incorporating anthracenyl or acridine orange DNA‐binding groups have been synthesized so as to obtain compounds that would display synergistic effects between platination and intercalation of DNA. Study of their interaction with supercoiled DNA indicated that the anthracenyl‐containing complex L2Pt displays a covalent type of binding, whereas the acridine orange counterpart L3Pt shows a combination of intercalative and covalent binding modes with a strong contribution from the former. L2Pt showed a very strong cytotoxic effect on ovarian carcinoma cell lines A2780 and A2780cisR, which are, respectively, sensitive to and resistant to cisplatin. In these cell lines, L2Pt is nine to 27 times more cytotoxic than cisplatin. In the sensitive cell line, L3Pt showed a cytotoxic activity similar to that of cisplatin, but like L2Pt was able significantly to overcome cisplatin cross‐resistance. Cell‐uptake studies showed that L2Pt accumulates preferentially in the cytoplasm, whereas L3Pt reaches the cell nucleus more easily, as clearly visualized by time‐lapse confocal imaging of live A2870 cells. Altogether, these findings seem to indicate that interaction with biological targets other than DNA might be involved in the mechanism of action of L2Pt because this compound, despite having a weaker ability to target the cell nucleus than L3Pt , as well as an inferior DNA affinity, is nevertheless more cytotoxic. Furthermore, ultrastructural studies of A2870 cells exposed to L2Pt and L3Pt revealed that these complexes induce different alterations in cell morphology, thus indicating the involvement of different modes of action in cell death.  相似文献   
160.
There has been a tenacious search for pharmaceuticals of natural origin, as they are cost-effective and are noted for having little or no side effects. The rate at which diseases are developing resistance to synthetic drugs is quite alarming, and the side effects of these drugs remain an excruciating agony to the pharmaceutical industry. Gold nanoparticles (AuNPs) have wide applications in current technology. However, their use in medicine has not been adequately explored. Chemical methods for the synthesis are associated with environmental benignity and tissue toxicity on in vivo administration. For the first time, we have synthesized AuNPs from leaf extracts of Teraxacum officinale that were found to have significant anti-melanoma, tyrosinase inhibitory and anti-microbial effects, and hence stand as promising candidates for use in cosmetics medical and food industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号