首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133678篇
  免费   14524篇
  国内免费   7061篇
电工技术   15531篇
技术理论   14篇
综合类   9931篇
化学工业   19199篇
金属工艺   4963篇
机械仪表   6790篇
建筑科学   17513篇
矿业工程   3328篇
能源动力   16384篇
轻工业   9158篇
水利工程   2127篇
石油天然气   4963篇
武器工业   1317篇
无线电   9631篇
一般工业技术   14630篇
冶金工业   6751篇
原子能技术   1810篇
自动化技术   11223篇
  2024年   872篇
  2023年   2894篇
  2022年   4741篇
  2021年   5437篇
  2020年   5716篇
  2019年   4943篇
  2018年   4439篇
  2017年   5218篇
  2016年   5630篇
  2015年   5659篇
  2014年   8990篇
  2013年   8741篇
  2012年   9847篇
  2011年   10554篇
  2010年   7953篇
  2009年   8135篇
  2008年   7175篇
  2007年   8451篇
  2006年   6916篇
  2005年   5522篇
  2004年   4600篇
  2003年   3947篇
  2002年   3369篇
  2001年   2853篇
  2000年   2319篇
  1999年   1870篇
  1998年   1422篇
  1997年   1169篇
  1996年   1051篇
  1995年   769篇
  1994年   674篇
  1993年   529篇
  1992年   424篇
  1991年   394篇
  1990年   302篇
  1989年   247篇
  1988年   196篇
  1987年   162篇
  1986年   116篇
  1985年   146篇
  1984年   132篇
  1983年   91篇
  1982年   106篇
  1981年   61篇
  1980年   88篇
  1979年   41篇
  1964年   30篇
  1963年   26篇
  1959年   23篇
  1955年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity.  相似文献   
62.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
63.
《Ceramics International》2022,48(1):811-823
Polyaniline (PANI)-based networks combined with Fe3O4 hollow spheres and carbon balls (FCP) for improved electromagnetic wave (EMW) absorption were investigated using an easy-to-industrialize solvothermal and physical method. Hollow structure Fe3O4 spheres with a lower density than that of the common solid sphere were prepared. As a thin and light magnetic material, Fe3O4 hollow spheres generate magnetic loss, carbon balls and PANI networks generate dielectric loss. The magnetic and conductive parts play appropriate roles in achieving complementarity in the EMW absorption. The relatively high specific surface area introduced by PANI networks promotes interfacial polarization and further supports dielectric loss. In conclusion, the above reasons provide multiple attenuation mechanisms. Samples FCP1 (?65.109 dB, at 12.800 GHz, 1.966 mm, from 5.6 to 18.0 GHz) and FCP2 (?61.033 dB, at 8.480 GHz, 3.328 mm, from 4.3 to 18.0 GHz) demonstrated a wide bandwidth, a small thickness, a minimum reflection loss (RL), and a low loading ratio (25%) in paraffin-based composites. Specifically, their loading ration of 25% is much lower than the loading ratio of conventional materials (usually 50% and above). In addition, the bandwidth is excessively wide, above 12 GHz, possessing good absorption performance in continuous intervals with different thicknesses. Such excellent characteristics have rarely been reported in literature.  相似文献   
64.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
65.
《Ceramics International》2021,47(20):28338-28347
Transition metal oxides have been explored in supercapacitor applications owing to their safety, low cost, high specific capacitance and high electrochemical activity. Among all transition metal oxides, zinc oxide based materials show remarkable response for designing the supercapacitors with high electrochemical activity. Here in, Mn doped ZnO (Zn1-xMnxO3 with x = 0, 0.25, 0.50, 0.75 and 1) was synthesized by a facile hydrothermal method. Doping of Mn into the ZnO increased the surface area and decease the charge transfer resistance for the Zn0.5Mn0.5O3. All the synthesized materials were characterized by x-ray diffraction (XRD), scanning electron microscopy SEM), BET, electrochemical tests and other various analytical techniques to confirm the structural, morphological, textural and suprcapacitive properties. The synthesized material Zn0.5Mn0.5O3 having the porous nanoribons structure with BET surface area (2490 cm2/g). The electrochemical studies showed significantly enhanced response toward pseudocapacitive nature. The synthesized material exhibited the excellent specific capacitance (515F/g), specific energy (28.61 Wh/kg) and specific power (1000 W/kg) at current density of 2 mA/g. Such impressive and superior properties make the MnZnO3 material as promising candidate for new generation supercapacitor applications.  相似文献   
66.
Hexagonal barium ferries is a promising and efficient microwave (MW) absorbing material, but the low dielectric loss and poor conductivity have limited their extensive applications. In this work, a simple tactic of coating conductive polymer PANI on hexaferrite BaCo2Fe16O27 is presented, wherein the dielectric properties are customized, and more significantly, the electromagnetic loss is greatly enhanced. As displayed from structural characterizations, PANI were coated equably on the surface of hexaferrite grains by an in-situ polymerization process. The outcomes exhibit the as-prepared PANI@hexaferrite composite has remarkable electromagnetic wave absorption capacity. When the thickness is 6.0 mm, the minimal RL of ?40.4 dB was achieved at 2.9 GHz. The effective absorption bandwidth (RL < ?20 dB) of 0.65 GHz, 0.53 GHz, 0.65 GHz, 0.52 GHz, 0.46 GHz and 0.39 GHz was achieved separately when the thickness ranges from 4 to 9 mm. The highly efficient MW absorbing performance of PANI@hexaferrite composite were the consequence of multiple loss mechanisms and perfect impedance matching. It is demonstrated that the PANI@hexaferrite composite with excellent MW absorption performance is expected to be potential MW absorbers for extensive applications.  相似文献   
67.
性能效率是APP软件的重要质量属性,但目前缺乏APP软件性能效率的通用模型。分析了APP软件的性能特征,基于ISO/IEC 25010标准提出了APP软件的性能效率模型,定义了APP软件性能效率的子特性和度量指标。基于提出的APP软件性能效率模型,通过实验对APP软件的性能效率进行了度量及相关分析。  相似文献   
68.
目的探讨水﹑气﹑土壤中多环芳烃检测标准(HJ 478-2009﹑HJ 647-2013、HJ 784-2016)的正确出峰时间和顺序。方法用高效液相色谱来对苊烯、芴、苊、?、苯并(a)蒽进行定性分析,并与3个标准中的出峰顺序进行比较。结果苊烯、苊、芴、苯并(a)蒽、?的出峰时间分别为6.450、7.923、8.233、17.760、18.740min,与标准HJ478-2009﹑HJ647-2013的出峰顺序存在差异。结论在使用标准HJ478-2009﹑HJ647-2013、HJ 784-2016同时测定16种多环芳烃时,多环芳烃的出峰顺序及时间应以HJ 784-2016为准。  相似文献   
69.
《Ceramics International》2022,48(24):36238-36248
Cf/SiC composite is an excellent structural and functional material, silicon carbide nanowires (SiCnws) are not only a toughening material but also a great application in the field of microwave absorption. In this study, SiCnws are grown on the surface of carbon fiber (Cf) by polymer impregnation and pyrolysis, and the SiC matrix was prepared by chemical vapor osmosis method. The SiCnws are introduced to enhance the mechanical and microwave absorption properties simultaneously. After 3 impregnations, the flexural strength of the composite was 107.35 ± 10 MPa. When the thickness is 1.86 mm, the minimum reflection loss value is ?41.08 dB, and the effective absorption bandwidth (RL ≤ ?10 dB) is 3.86 GHz. Furthermore, the microwave absorption mechanism of the material is discussed. This work provides a new method to prepare lightweight, stable and high-performance microwave absorption materials, and these materials are expected to be used in high temperature environments.  相似文献   
70.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号