首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3889篇
  免费   347篇
  国内免费   82篇
电工技术   181篇
综合类   132篇
化学工业   2239篇
金属工艺   19篇
机械仪表   27篇
建筑科学   114篇
矿业工程   219篇
能源动力   1020篇
轻工业   30篇
水利工程   1篇
石油天然气   166篇
武器工业   1篇
无线电   5篇
一般工业技术   41篇
冶金工业   99篇
原子能技术   4篇
自动化技术   20篇
  2024年   5篇
  2023年   42篇
  2022年   99篇
  2021年   109篇
  2020年   125篇
  2019年   138篇
  2018年   98篇
  2017年   96篇
  2016年   125篇
  2015年   124篇
  2014年   251篇
  2013年   257篇
  2012年   296篇
  2011年   334篇
  2010年   251篇
  2009年   244篇
  2008年   168篇
  2007年   247篇
  2006年   177篇
  2005年   157篇
  2004年   144篇
  2003年   147篇
  2002年   76篇
  2001年   79篇
  2000年   86篇
  1999年   55篇
  1998年   66篇
  1997年   33篇
  1996年   46篇
  1995年   28篇
  1994年   29篇
  1993年   18篇
  1992年   18篇
  1991年   13篇
  1990年   8篇
  1989年   5篇
  1988年   5篇
  1987年   11篇
  1986年   3篇
  1985年   26篇
  1984年   21篇
  1983年   36篇
  1982年   10篇
  1980年   5篇
  1977年   1篇
  1951年   6篇
排序方式: 共有4318条查询结果,搜索用时 343 毫秒
81.
汽气共生热电气联产技术的研究   总被引:1,自引:0,他引:1  
本文介绍了一种汽气共生热电气三联产新工艺.该工艺是以现有循环流化床技术为基础,集燃烧和气化工艺于一体,能同时产生民用煤气、蒸汽、电力.在小型热态试验以架上进行的一系列试验已成功地证实了该技术的可行性.在此基础上,一台蒸汽产量为75t/h的热电气三联产装置已完成设计,正在实施之中.  相似文献   
82.
两段式干煤粉加压气化技术的研究开发   总被引:5,自引:0,他引:5  
大型煤气化是煤气化联合循环发电及多联产系统的核心技术,介绍了大容量化的先进的干煤粉加压气化技术。我国目前尚不具备设计、制造大型干煤粉加压气化炉的能力,为此,西安热工研究院开发出了具有自主知识产权的两段式干煤粉加压气流床气化技术,并进行了试验研究。结果表明两段式干煤粉加压气化炉的冷煤气效率比国外的技术可提高2~3个百分点,比氧耗减小,自耗功大幅度降低,煤气冷却器及净化系统的设备尺寸减小,造价降低。36~40t/h的半工业性装置的多煤种试验已累计运行2000h,为该技术的工业化奠定了基础。并介绍了目前正在开发中的1000t/d气化炉,将于2008年建成投运。  相似文献   
83.
根据煤气化装置中最重要的设备———气化关键设备压力容器的制造实践,综合论述了该设备的主要制造工艺、检验和试验的要点  相似文献   
84.
曹天宇  张格培  史翊翔  蔡宁生 《煤炭学报》2016,41(10):2490-2494
液态金属气化技术是一种清洁的气化技术。因其原料适应性广,反应系统架构简单,适用于以固体碳为基础的分布式能源供给。反应过程中空气中的氧元素与熔融态的金属床料反应生成金属氧化物,再由碳原料还原氧化物生产含CO的产品气。为提高产品气中CO的比例,系统中引入了氧化锌(ZnO)以促进CO的生成。程序控温气化反应测试结果表明,氧元素由氧化锌向碳的迁移过程是气化反应的控制步骤,拓展熔池内部氧元素迁移路径,强化氧元素由氧化锌向碳的迁移过程是提高液态金属气化速率的重要途径。碱金属碳酸盐(Na_2CO_3,K_2CO_3)在高温下形成熔融态的氧传导路径,使得由氧化锌到碳原料的氧传导得到增强,改善了煤气化的反应特性。对不同碱金属碳酸盐的实验结果表明,具有较高氧离子传导率的碳酸盐能够使得熔体具有更好的煤气化特性。采用两种碳酸盐混合物制成的低熔点碳酸盐体系能够在较低温度(约720℃)时发挥氧离子传导的作用,促进气化反应在低温状态下的发生。  相似文献   
85.
The performance of an innovative hydrogen production technology, which is based on a coal gasification system integrated with a dual chemical looping process, namely, chemical looping air separation (CLAS) and calcium looping CO2 absorption (CaL), is evaluated. CLAS offers an advantage over other mature technologies in that it can reduce capital costs considerably. CaL is an efficient method for hydrogen production and CO2 capturing. The proposed technologies are studied by Aspen Plus based on the Gibbs free energy minimization principle. The key factors in terms of reduction temperature, gasification pressure, temperature of water‐gas shift reaction, and water consumption, which proved to have a significant impact on the performance of the whole hydrogen generation process, are discussed.  相似文献   
86.
混合煤气发生炉与有机热载体炉配套使用符合混合煤气生产流程(即不洗涤降温,不贮存,随产随用),有利于提高可燃物质的燃尽率,提高有机热载体炉的热效率,既节能又环保。  相似文献   
87.
万保健 《河北化工》2012,35(4):3-4,6
综述了碎煤加压气化技术的优势和流程。该技术成熟可靠,煤种适应范围广,是大型氮肥企业可选用的气化技术之一。  相似文献   
88.
In the present work, a core-shell structured Co/SiO2@HZSM-5 catalyst was prepared for hydrogen production from syngas of plastic waste gasification. The cobalt catalyst was coated with HZSM-5 shell through a hydrothermal process, and the Co/SiO2@HZSM-5, with different loadings of HZSM-5 (e.g., 10–30 wt %) exhibited excellent activity and durability for dehydrogenation reactions. The amount of HZSM-5 was found to be an important factor for hydrogen production. Temperature-programmed reduction with H2 and temperature-programmed desorption of ammonia was applied to determine the active site and the acidity of prepared catalyst, respectively. The prepared Co/SiO2@HZSM-5 was tested through reforming of plastic gasification syngas and shown superior hydrogen production ability (∼90%) and stability (over 15 h). The effects of reduction-oxidation behavior on the catalytic performance were also discussed.  相似文献   
89.
Gasification of solid waste is considered as a green and sustainable solution to perform energy recovery from several waste streams. This work aims to adapt an Euler-Euler multiphase mathematical model to understand the effects of physical and chemical factors, i.e. equivalence ratio (ER), steam to fuel ratio (SFR), and input plasma power of municipal solid waste (MSW) fixed bed gasification. The model is capable of simulating temperature and velocity fields, as well as gas and solid composition variations inside the reactor. A two-step pyrolysis model is used considering the pyrolysis mechanism of cellulose and plastic components. Drying, pyrolysis, homogeneous gas reactions, and heterogeneous combustion/gasification reactions were also included in the model. It was shown that the proposed model could provide accurate predictions against experimental data with a deviation generally lesser than 10%. Conclusion could be drawn that an ER of 0.3 and an SRF of 0.5 seems to be the most favourable conditions in order to obtain a high-quality syngas. Higher plasma power is favourable to obtain a high-quality syngas. However, the high electric power required penalizes the process efficiency and may compromise the economic viability of a plasma gasification project.  相似文献   
90.
Underground coal gasification (UCG) is a process which converts deep, un-mineable or difficult to mine coal resources into syngas which can then be converted into valuable end products such as electric power, liquid fuels, synthetic natural gas and chemicals. This paper provides a summary of the UCG operations conducted at the Chinchilla Demonstration Facility in Australia, focusing on gasifiers constructed using directional drilling. A number of the experiences and key lessons learned from operating multiple underground gasifiers over several years at the facility are described. Implications for the implementation in commercial projects using UCG are also discussed. Finally, the potential of UCG as a method for producing syngas from deep coal is discussed and some of the challenges and opportunities are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号