首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23339篇
  免费   4461篇
  国内免费   2513篇
电工技术   2003篇
技术理论   2篇
综合类   2778篇
化学工业   1565篇
金属工艺   1126篇
机械仪表   1480篇
建筑科学   1875篇
矿业工程   1518篇
能源动力   898篇
轻工业   900篇
水利工程   1237篇
石油天然气   2896篇
武器工业   350篇
无线电   2049篇
一般工业技术   1915篇
冶金工业   1133篇
原子能技术   104篇
自动化技术   6484篇
  2024年   805篇
  2023年   827篇
  2022年   1383篇
  2021年   1359篇
  2020年   1235篇
  2019年   1025篇
  2018年   883篇
  2017年   968篇
  2016年   1128篇
  2015年   1123篇
  2014年   1609篇
  2013年   1434篇
  2012年   1775篇
  2011年   1790篇
  2010年   1371篇
  2009年   1334篇
  2008年   1260篇
  2007年   1446篇
  2006年   1291篇
  2005年   1066篇
  2004年   909篇
  2003年   767篇
  2002年   618篇
  2001年   564篇
  2000年   407篇
  1999年   361篇
  1998年   280篇
  1997年   254篇
  1996年   201篇
  1995年   164篇
  1994年   140篇
  1993年   80篇
  1992年   80篇
  1991年   77篇
  1990年   50篇
  1989年   49篇
  1988年   32篇
  1987年   17篇
  1986年   14篇
  1985年   9篇
  1984年   7篇
  1983年   15篇
  1982年   13篇
  1981年   13篇
  1980年   11篇
  1979年   8篇
  1963年   4篇
  1962年   4篇
  1955年   5篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《食品工业科技》2013,(07):102-105
采用差示扫描量热法和圆二色谱分析了动态高压微射流处理前后胰蛋白酶结构的变化,结合前期研究中动态高压微射流诱导的去折叠胰蛋白酶构象的表征,通过PyMOL、3DSMax等软件分别对天然胰蛋白酶和动态高压微射流诱导的去折叠胰蛋白酶的三维空间构象进行模拟和预测,结果表明:与天然胰蛋白酶相比,动态高压微射流处理后胰蛋白酶热焓降低,二级结构构象单元百分含量发生变化,去折叠胰蛋白酶结构更加松散。模拟的胰蛋白酶分子构象示意图更直观地显示了胰蛋白酶的活性中心、二硫键以及二级结构信息,对动态高压微射流诱导的去折叠胰蛋白酶三维结构模型变化做一初探。   相似文献   
12.
In recent years, smart healthcare, artificial intelligence (AI)-aided diagnostics, and automated surgical robots are just a few of the innovations that have emerged and gained popularity with the advent of Healthcare 4.0. Such technologies are powered by machine learning (ML) and deep learning (DL), which are preferable for disease diagnosis, identifying patterns, prescribing treatments, and forecasting diseases like stroke prediction, cancer prediction and so forth. Nevertheless, much data is needed for AI, ML, and DL-based systems to train effectively and provide the desired outcomes. Further, it raises concerns about data privacy, security, communication overhead, regulatory compliance and so forth. Federated learning (FL) is a technology that protects data security and privacy by limiting data sharing and utilizing model information of distributed systems to enhance performance. However, existing approaches are traditionally verified on pre-established datasets that fail to capture real-life applicability. Therefore, this study proposes an AI-enabled stroke prediction architecture consisting of FL based on the artificial neural network (ANN) model using data from actual stroke cases. This architecture can be implemented on healthcare-based wearable devices (WD) for real-time use as it is effective, precise, and computationally affordable. In order to continuously enhance the performance of the global model, the proposed FL-based architecture aggregates the optimizer weights of many clients using a fifth-generation (5G) communication channel. Then, the performance of the proposed FL-based architecture is studied based on multiple parameters such as accuracy, precision, recall, bit error rate, and spectral noise. It outperforms the traditional approaches regarding accuracy, which is 5% to 10% higher.  相似文献   
13.
针对越来越严重的信号畸变和线间耦合问题,应用时域有限差分法(Finite Difference Time Domain,FDTD)建立了不均匀多导体传输线的仿真模型,并通过MATLAB编程对不均匀多导体传输线两端的电压响应进行了仿真分析.在此基础上,理论说明了各端口瞬态响应的波形特点.结果表明了时域有限差分法用于分析多导体传输系统电磁兼容问题的正确性和有效性,为电磁干扰的预测提供了有价值的参考信息.  相似文献   
14.
Genotype-by-environment interaction (G-by-E) is a common but potentially problematic phenomenon in plant breeding. In this study, we investigated the genotypic performance and two measures of plasticity on a phenotypic and genetic level by assessing 234 maize doubled haploid lines from six populations for 15 traits in seven macro-environments with a focus on varying soil phosphorus levels. It was found intergenic regions contributed the most to the variation of phenotypic linear plasticity. For 15 traits, 124 and 31 quantitative trait loci (QTL) were identified for genotypic performance and phenotypic plasticity, respectively. Further, some genes associated with phosphorus use efficiency, such as Zm00001eb117170, Zm00001eb258520, and Zm00001eb265410, encode small ubiquitin-like modifier E3 ligase were identified. By significantly testing the main effect and G-by-E effect, 38 main QTL and 17 interaction QTL were identified, respectively, in which MQTL38 contained the gene Zm00001eb374120, and its effect was related to phosphorus concentration in the soil, the lower the concentration, the greater the effect. Differences in the size and sign of the QTL effect in multiple environments could account for G-by-E. At last, the superiority of G-by-E in genomic selection was observed. In summary, our findings will provide theoretical guidance for breeding P-efficient and broadly adaptable varieties.  相似文献   
15.
Caveolin-2 is a protein suitable for the study of interactions of caveolins with other proteins and lipids present in caveolar lipid rafts. Caveolin-2 has a lower tendency to associate with high molecular weight oligomers than caveolin-1, facilitating the study of its structural modulation upon association with other proteins or lipids. In this paper, we have successfully expressed and purified recombinant human caveolin-2 using E. coli. The structural changes of caveolin-2 upon interaction with a lipid bilayer of liposomes were characterized using bioinformatic prediction models, circular dichroism, differential scanning calorimetry, and fluorescence techniques. Our data support that caveolin-2 binds and alters cholesterol-rich domains in the membranes through a CARC domain, a type of cholesterol-interacting domain in its sequence. The far UV-CD spectra support that the purified protein keeps its folding properties but undergoes a change in its secondary structure in the presence of lipids that correlates with the acquisition of a more stable conformation, as shown by differential scanning calorimetry experiments. Fluorescence experiments using egg yolk lecithin large unilamellar vesicles loaded with 1,6-diphenylhexatriene confirmed that caveolin-2 adsorbs to the membrane but only penetrates the core of the phospholipid bilayer if vesicles are supplemented with 30% of cholesterol. Our study sheds light on the caveolin-2 interaction with lipids. In addition, we propose that purified recombinant caveolin-2 can provide a new tool to study protein–lipid interactions within caveolae.  相似文献   
16.
Neo-adjuvant therapy (NAT) is increasingly used in the clinic for the treatment of breast cancer (BC). Pathological response to NAT has been associated with improved patients’ survival; however, the current techniques employed for assessing the tumor response have significant limitations. Small EVs (sEVs)-encapsulated miRNAs have emerged as promising new biomarkers for diagnosis and prediction. Therefore, our study aims to explore the predictive value of these miRNAs for the pathological response to NAT in BC. By employing bioinformatic tools, we selected a set of miRNAs and evaluated their expression in plasma sEVs and BC biopsies. Twelve miRNAs were identified in sEVs, of which, miR-21-5p, 221-3p, 146a-5p and 26a-5p were significantly associated with the Miller–Payne (MP) pathological response to NAT. Moreover, miR-21-5p, 146a-5p, 26a-5p and miR-24-3p were independent as predictors of MP response to NAT. However, the expression of these miRNAs showed no correlation between sEVs and tissue samples, indicating that the mechanisms of miRNA sorting into sEVs still needs to be elucidated. Functional analysis of miRNA target genes and drug interactions revealed that candidate miRNAs and their targets, can be regulated by different NAT regimens. This evidence supports their role in governing the patients’ therapy response and highlights their potential use as prediction biomarkers.  相似文献   
17.
Identifying drug–target interactions is a crucial step in discovering novel drugs and for drug repositioning. Network-based methods have shown great potential thanks to the straightforward integration of information from different sources and the possibility of extracting novel information from the graph topology. However, despite recent advances, there is still an urgent need for efficient and robust prediction methods. Here, we present SimSpread, a novel method that combines network-based inference with chemical similarity. This method employs a tripartite drug–drug–target network constructed from protein–ligand interaction annotations and drug–drug chemical similarity on which a resource-spreading algorithm predicts potential biological targets for both known or failed drugs and novel compounds. We describe small molecules as vectors of similarity indices to other compounds, thereby providing a flexible means to explore diverse molecular representations. We show that our proposed method achieves high prediction performance through multiple cross-validation and time-split validation procedures over a series of datasets. In addition, we demonstrate that our method performed a balanced exploration of both chemical ligand space (scaffold hopping) and biological target space (target hopping). Our results suggest robust and balanced performance, and our method may be useful for predicting drug targets, virtual screening, and drug repositioning.  相似文献   
18.
Potential drug toxicities and drug interactions of redundant compounds of plant complexes may cause unexpected clinical responses or even severe adverse events. On the other hand, super-additivity of drug interactions between natural products and synthetic drugs may be utilized to gain better performance in disease management. Although without enough datasets for prediction model training, based on the SwissSimilarity and PubChem platforms, for the first time, a feasible workflow of prediction of both toxicity and drug interaction of plant complexes was built in this study. The optimal similarity score threshold for toxicity prediction of this system is 0.6171, based on an analysis of 20 different herbal medicines. From the PubChem database, 31 different sections of toxicity information such as “Acute Effects”, “NIOSH Toxicity Data”, “Interactions”, “Hepatotoxicity”, “Carcinogenicity”, “Symptoms”, and “Human Toxicity Values” sections have been retrieved, with dozens of active compounds predicted to exert potential toxicities. In Spatholobus suberectus Dunn (SSD), there are 9 out of 24 active compounds predicted to play synergistic effects on cancer management with various drugs or factors. The synergism between SSD, luteolin and docetaxel in the management of triple-negative breast cancer was proved by the combination index assay, synergy score detection assay, and xenograft model.  相似文献   
19.
20.
Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号