首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1312篇
  免费   390篇
  国内免费   50篇
电工技术   31篇
综合类   59篇
化学工业   343篇
金属工艺   48篇
机械仪表   23篇
建筑科学   19篇
矿业工程   5篇
能源动力   45篇
轻工业   6篇
水利工程   4篇
石油天然气   5篇
武器工业   6篇
无线电   451篇
一般工业技术   622篇
冶金工业   23篇
原子能技术   21篇
自动化技术   41篇
  2024年   16篇
  2023年   152篇
  2022年   41篇
  2021年   120篇
  2020年   182篇
  2019年   180篇
  2018年   108篇
  2017年   152篇
  2016年   101篇
  2015年   70篇
  2014年   41篇
  2013年   56篇
  2012年   48篇
  2011年   48篇
  2010年   27篇
  2009年   37篇
  2008年   28篇
  2007年   34篇
  2006年   36篇
  2005年   22篇
  2004年   33篇
  2003年   19篇
  2002年   24篇
  2001年   33篇
  2000年   33篇
  1999年   17篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   14篇
  1990年   11篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   1篇
  1951年   1篇
排序方式: 共有1752条查询结果,搜索用时 15 毫秒
11.
Strontium-doped lanthanum manganite powders were prepared using a peroxide acetate salt based solution. The stable sol was peptized by reacting ammonium hydroxide with the precursor solution. The amorphous dried gel powders exhibit a high energy level, due to their high cations coordination and small particles, to develop the perovskite phase. This crystalline phase development from powders containing monocarboxylate ligands was characterized by thermal analysis (TG, DTG, DTA), X-ray diffraction, and IR spectroscopy. The transformation from amorphous powders into a crystallized homogeneous oxycarbonate phase in a first stage corresponds to an exothermal DTA peak at 270°C. X-ray diffraction patterns and IR spectra showed similar behavior of the powders after complete organic removal, during the conversion into perovskite phase starting at approximately 630°C and achieved about 700°C and achieved about 700°C, as well as during the sintering process.  相似文献   
12.
The aging behavior of a series of lead perovskite dielectrics with the compositions x Pb(Fe2/3W1/3)O3·(1 – x )Pb(Fe1/2-Nb1/2)O3, where 0 ≤ x ≤ 1, and the effect of dopants were studied. Below the Curie temperature ( T c), the capacitance and the dissipation factor (tan δ) decrease approximately linearly with logarithmic time. The aging rate depends on the temperature difference, Δ T , between the aging temperature and T c, and on the dopant concentration, but is independent of the measurement frequency between 1 and 1000 kHz. The maximum aging rate is about 3% per decade of time for capacitance and 5% per decade for tan δ at 1 mol% dopant concentration, and increases to 6.3% for capacitance and 8.5% for tan δ at 0.7 mol% dopant concentration. These results are consistent with an aging mechanism caused by changing ferroelectric domain structure with time, as proposed for BaTiO3.  相似文献   
13.
Summary: Compacted fiber composites offer unique properties due to their lack of an extraneous matrix. The conditions of processing ultra‐high molecular weight polyethylene (UHMWPE) fibers were simulated in a heated pressure cell. In situ X‐ray diffraction measurements were used to follow the relevant transitions and the changes in the degree of crystallinity during melting and crystallization. The results strongly support the suggestion that the hexagonal crystal phase, in which the chain conformation is extremely mobile on the segmental level, constitutes the physical basis of compaction technologies for processing UHMWPE fibers into a single‐polymer composite. This report suggests that using a pseudo‐phase diagram outlining the occurrence of different phases during slow heating and the degree of crystallinity can provide valuable insight into the technological parameters relevant for optimal processing conditions.

Degree of crystallinity as a function of pressure and temperature in a region relevant to compaction processes.  相似文献   

14.
dc Electrical Degradation of Perovskite-Type Titanates: I, Ceramics   总被引:2,自引:0,他引:2  
The rate of the resistance degradation of doped SrTiO3 ceramics is investigated as a function of various external and material parameters. The effects of the mutually interrelated parameters dc voltage, dc electric field, and thickness of the dielectric are described by power laws. Electron microscopic potential contrast studies show a Maxwell-Wagner polarization leading to a concentration of the electric field at the grain boundaries during the degradation. Based on this finding, the voltage step per grain boundary, ΔΘgb, is introduced as a rate-determining parameter which allows an explanation of the influence of the grain size on the degradation rate as well as the difference in the power laws for ceramic and single-crystal samples.  相似文献   
15.
The catalytic activity of LaCoO3–-based mixed oxides for the oxidative coupling of methane has been tested by TPR and cyclic reaction. Characterization has been done by XRD, TGA and Mössbauer spectrometry. It is likely that the perovskite-crystal structure containing hypervalent metal ions has an important role and that unique structural oxygen species in the perovskite contribute to the partial oxidation of methane.  相似文献   
16.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   
17.
Ammoxidation of toluene over the perovskites YBa2Cu3O6.1, YBa2Cu2CoO6.7 and YBaCuCoO4.9 was investigated at 400 °C. At low partial pressures of O2 benzonitrile was selectively formed, while CO2 was the main product at high pressures of O2. Systematic differences in activity were observed for the three phases and are related to the crystal contents of Cu and Co. At low O2 pressures, Cu-sites are active for nitrile formation, while Co-sites give CO2. At high O2 pressures, the activity for CO2 of Cu-sites increases more than that of Co-sites due to filling of near-surface oxygen vacancies.  相似文献   
18.
In this paper, we describe the preparation of a porous nanosheet-stacked NiCo2O4 composite electrode using a novel electrophoretic deposition (EPD) calcination method. The effects of the deposition time and voltage, and of the calcination temperature have been investigated. The microstructure of the deposited films in the electrodes before and after calcination has also been investigated. The electrocatalytic properties of the electrodes have been investigated using cyclic voltammetry and polarization curves. The electrode films produced using this new technique have a porous structure composed of stacked hexagonal NiCo2O4 nanosheets. The resulting electrodes exhibit good electrocatalytic properties for water electrolysis.  相似文献   
19.
W-type ferrite is a member of the hexagonal ferrite family and a potential permanent magnet material. However, its synthesis conditions are not fully understood yet. Samples were sintered either at 1400°C in air and quenched, or at 1300°C at reduced oxygen partial pressure. The precise stability conditions of this W-type ferrite were investigated in the temperature range of 1200°C-1400°C using thermogravimetry, XRD, and electron microscopy. At 1300°C, the ferrite is stable at oxygen partial pressures of . At more oxidizing conditions, the ferrite decomposes into M-type ferrite and hematite, while at more reducing atmospheres Sr4Fe6O13 and magnetite are formed. The nonstoichiometry δ of SrFe18−δO27 was derived from thermal analysis data at 1300°C as function of oxygen partial pressure and was found to be mainly due to cation vacancies. Magnetization measurements show that this W-type ferrite exhibits Ms = 103 emu/g at T = 4 K, which agrees well with a ferrimagnetic spin arrangement according to Gorter's model. As alternative, Zn-substituted W-ferrite was found to be stable in air at 1200°C with a large Ms = 123 emu/g at 4 K.  相似文献   
20.
A complex perovskite of Sr(Cu x Zn1- x )1/2 W1/2O3 (SCZW) is synthesized by a new combination of wet and dry processess. Mixed oxides containing Cu2+ and Zn2+ (CZ) are prepared by the wet process (coprecipitate method). SCZW is obtained by the dry process (mixed-oxide method) from a mixture of CZ, SrCO3, and WO3. SCZW has practically no compositional, unlike solid solutions prepared by the conventional dry method. The wet–dry process method is useful because the wet process is applied to only B-site cations having the same valence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号