首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   48篇
  国内免费   6篇
综合类   4篇
化学工业   167篇
金属工艺   4篇
机械仪表   6篇
轻工业   89篇
水利工程   1篇
无线电   26篇
一般工业技术   119篇
  2024年   2篇
  2023年   15篇
  2022年   18篇
  2021年   37篇
  2020年   26篇
  2019年   32篇
  2018年   20篇
  2017年   15篇
  2016年   17篇
  2015年   20篇
  2014年   25篇
  2013年   43篇
  2012年   10篇
  2011年   18篇
  2010年   15篇
  2009年   11篇
  2008年   15篇
  2007年   9篇
  2006年   9篇
  2005年   5篇
  2004年   9篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1979年   1篇
排序方式: 共有416条查询结果,搜索用时 125 毫秒
141.
In the present review the crucial role of the guanidinium functional group in facilitating the transport of dendritic polymers through liposomal and cell membranes is discussed, along with other structural features of guanidinylated dendritic polymers that fine-tune their transport properties, and even determine their subcellular destinations. In this context, an ideal dendritic molecular transporter would need to possess a dendritic scaffold of the appropriate size and degree of guanidinylation, flexibility of the guanidinium moiety, and should exhibit a proper balance between hydrophilic and hydrophobic moieties located on the dendritic surface. All of the above are illustrated through selected paradigms from the relevant literature, which give a valuable insight into forging successful dendritic delivery systems for both drugs and genes. The main challenge for the future focus of the field is identified as the determination of the key structural and functional characteristics that will enhance cell internalisation, and secure localisation in specific subcellular organelles.  相似文献   
142.
A fast-triggered photolytic technology based on the on-demand release of biocides encapsulated within phospholipid nanoparticles has been developed for the neutralization of biological contaminants such as bacteria. Fast-triggered release occurs when light sensitive molecules (photosensitizers) embedded within phospholipid particles are triggered by an external light stimulus. The photo-induced oxidation due to the stimulus causes the lipid chains to break and rapidly release their contents. When the phospholipid carriers are loaded with strong biocides, the fast-triggered release can result in the neutralization of biological contaminants in a controlled environment. It was observed that a 98% release of biocides was achieved in 12 min and 68% release achieved in 2 min through photo-induced oxidation. This method of release of biocides potentially can offer a technology for rapid decontamination inside heating, ventilation and air conditioning (HVAC) systems and surfaces such as walls, windows, etc. Moreover, biocide loaded phospholipid particles could be released as aerosols for neutralizing airborne bacteria and other biological contaminants. The appropriate choice of biocides can enable potential use in first-responder type situations and the automatic remote neutralization following bacterial contamination of air ducts or surfaces.  相似文献   
143.
Context: One among many attempts to improve oral protein drug delivery was utilizing the colloidal drug carriers particularly liposomes.

Objective: The purpose was to develop proliposomes of bovine serum albumin (BSA) in the form of granules and delayed-release tablets by using simple tablet manufacturing process.

Materials and methods: BSA proliposomes granules were prepared by spraying 7:3 (w/w) – lecithin:cholesterol solution mixture onto BSA-mannitol granules rotating in a glass coating pan. BSA proliposomes granules were directly compressed into tablets and subsequently coated with Eudragit® L100 film. The physical properties and stability in gastrointestinal fluids of delayed-release BSA proliposomes tablets as well as reconstituted liposomes were assessed.

Results: The BSA proliposomes tablets disintegrated readily and the obtained reconstituted BSA liposomes exhibited multilamellar vesicles, the size and entrapment efficiency of which were around 2–3 µm and 10–14%, respectively. The delayed-release BSA proliposomes tablets were found to be relatively stable in United States Pharmacopoeia (USP) simulated gastric and intestinal fluids. Increase in amount of BSA in granules resulted in the increase in entrapment efficiency and loading capacity.

Discussion: The Fourier transform infrared spectroscopy (FTIR) results indicated increase in α-helix structure of BSA entrapped in liposomes. 31P phosphorous nuclear magnetic resonance spectroscopy (31P-NMR) spectrum indicated interaction between BSA molecules and phosphoric acid polar groups of bilayers membrane.

Conclusion: The delayed-release BSA proliposomes tablets developed could completely be reconstituted into liposomes with sufficient resistance to the hostile environment in gastrointestinal tract.  相似文献   
144.
Mucoadhesive drug delivery systems offer promising opportunities for oral drug delivery. The aim of this study was to investigate the feasibility of preparing liposomes that are coated with the multifunctional polymer poly(acrylic acid)-cysteine (PAA-Cys). Cationic multilamellar vesicles (MLV) as well as cationic submicron-sized liposomes (ssLip) were prepared and coated with PAA-Cys. Size, zeta potential, amount of free thiol groups, aggregation behavior, drug-loading, and drug release of these novel carriers were evaluated. A switch of the initial positive zeta potential to a negative value after coating indicated the successful coating procedure. In both size ranges, MLV and ssLip, the amount of free thiol groups was comparable to that in a PAA-Cys solution of the same concentration. Drug loading of the hydrophilic marker fluorescence-isothiocyanate 4 kDa (FD4) was higher in PAA-Cys liposomes in comparison to noncoated liposomes, but lower in comparison to liposomes coated with unmodified poly(acrylic acid) (PAA). Only a minor ssLip or no increase MLV of the drug-loading was observed when using carboxyfluorescein (CF). These effects were attributed to interactions between the markers and the poly(acrylates). Coating of liposomes with PAA-Cys and PAA did not influence the release profile of FD4 and CF, whereas the release profile was affected by the molecular mass of the marker and the liposome size. In conclusion, the feasibility of coating liposomes with PAA-Cys was demonstrated, and it could be shown that this novel carrier system fulfills the basic requirements for an intended use in oral drug delivery.  相似文献   
145.
The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of membrane proteins is often difficult to sustain following reconstitution, since the composition of the model phospholipid bilayer differs from that of the native cell membrane. This review will discuss the reconstitution of membrane protein activities in four different types of model membrane—monolayers, supported lipid bilayers, liposomes and nanodiscs, comparing their advantages in membrane protein reconstitution. Variation in the surrounding model environments for these four different types of membrane layer can affect the three-dimensional structure of reconstituted proteins and may possibly lead to loss of the proteins activity. We also discuss examples where the same membrane proteins have been successfully reconstituted into two or more model membrane systems with comparison of the observed activity in each system. Understanding of the behavioral changes for proteins in model membrane systems after membrane reconstitution is often a prerequisite to protein research. It is essential to find better solutions for retaining membrane protein activities for measurement and characterization in vitro.  相似文献   
146.
Cell membranes inhibit the diffusion of intracellular materials, and compartment size can strongly affect the intracellular biochemical reactions. To assess the effect of the size of microcompartments on intracellular reactions, we constructed a primitive cell model consisting of giant liposomes and a translation‐coupled RNA replication (TcRR) system. The RNA was replicated by Qβ replicase, which was translated from the RNA in giant liposomes encapsulating the cell‐free translation system. A reporter RNA encoding the antisense strand of β‐glucuronidase was introduced into the system to yield a TcRR read‐out (green fluorescence). We demonstrate that TcRR was hardly detectable in larger liposomes (230 fL) but was more effective in smaller (7.7 fL) liposomes. Our experimental and theoretical results show that smaller microcompartments considerably enhance TcRR because the synthesized molecules, such as RNA and replicases, are more concentrated in smaller liposomes.  相似文献   
147.
Many peptides and peptidomimetic drugs suffer from rapid clearance in vivo; this can be reduced by increasing their size through oligomerization or covalent conjugation with polymers. As proof of principle, an alternative strategy for drug oligomerization is described, in which peptidomimetic thrombin inhibitors are incorporated into the liposome surface. For this purpose, the inhibitor moieties were covalently coupled to a palmitic acid residue through a short bifunctionalized ethylene glycol spacer. These molecules were directly added to the lipid mixture used for liposome preparation. The obtained liposomes possess strong thrombin inhibitory potency in enzyme kinetic measurements and anticoagulant activity in plasma. Their strong potency and positive ζ potential indicate that large amounts of the benzamidine‐derived inhibitors are located on the surface of the liposomes. This concept should be applicable to other drug molecules that suffer from rapid elimination and allow covalent modification with a suitable fatty acid residue.  相似文献   
148.
Rationally designed polydiacetylene (PDA) molecules have been developed for rapid, selective, sensitive, and convenient colorimetric detection of organophosphate (OP) nerve agents, a mass destruction weapon. Oxime (OX) functionality was incorporated into diacetylene molecules to utilize its strong affinity toward organophosphates. The diacetylene molecules having an OX functional group (OX‐PDA) were self‐assembled to form PDA liposomes in an aqueous solution. Upon exposure to organophosphate nerve agent simulants, OX at the OX‐PDA liposome surface interacts with nerve agent simulants, which results in intraliposomal repulsive stress due to steric repulsion between OP‐occupied OX units at the liposome surface as well as interliposomal aggregation induced by increased hydrophobicity of the liposome surface via OP‐OX complex formation. The resulting intra‐ and interliposomal stress causes disturbance of the conjugated backbone of OX‐PDA, producing color change as a label‐free and sensitive sensory signal. The effects of molecular structure on selectivity and sensitivity of OX‐PDA liposome solution, OX‐PDA liposome‐embedded agarose gels, and OX‐PDA liposome‐coated cellulose acetate membranes were systematically investigated. The optimized OX‐PDA liposome in the solid state showed selective and rapid optical transition upon exposure down to 160 ppb of diisopropylfluorophosphate (DFP), a nerve agent simulant. The results provide an insightful molecular design principle of PDA‐based colorimetric sensor and suggest portable sensory patches for rapid, selective, sensitive, and convenient colorimetric detection of organophosphate nerve agents.  相似文献   
149.
150.
In recent years, new technologies have led to the production of biofunctional textiles. These biofunctional textiles contain microscopic capsules of ingredients that break as the fabric rubs the skin, releasing the active agents. Absorption and desorption behaviour of active agents embedded into the different biofunctional textiles should be taken into account when determining the amount of active agents incorporated into these textiles and when following the delivery mechanism as the fabric comes in contact with the skin. In this work, an encapsulated active agent (a sun filter, ethyl hexyl methoxycinnamate [EHMC] into microcapsules or liposomes) was applied by foulard onto different fabrics. The amount of capsules and active agents embedded into the fibres were quantified by (1) weight difference between untreated and treated fabrics, (2) extraction with isopropanol in an ultrasound bath, or (3) extraction with isopropanol/water 50/50 in a soxhlet device. Sun filter detection of the extraction baths was followed by HPLC and by UV spectrophotometry. The results show that the real amount of the EHMC present in different textile substrates depends on the way that the active agent is trapped, the ionic character of the fibres and on the vehicles used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号