首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12529篇
  免费   1384篇
  国内免费   981篇
电工技术   257篇
综合类   1084篇
化学工业   660篇
金属工艺   2724篇
机械仪表   1909篇
建筑科学   951篇
矿业工程   179篇
能源动力   348篇
轻工业   252篇
水利工程   53篇
石油天然气   417篇
武器工业   147篇
无线电   309篇
一般工业技术   4377篇
冶金工业   665篇
原子能技术   92篇
自动化技术   470篇
  2024年   52篇
  2023年   218篇
  2022年   271篇
  2021年   346篇
  2020年   482篇
  2019年   427篇
  2018年   394篇
  2017年   482篇
  2016年   570篇
  2015年   627篇
  2014年   727篇
  2013年   763篇
  2012年   764篇
  2011年   820篇
  2010年   598篇
  2009年   666篇
  2008年   566篇
  2007年   678篇
  2006年   631篇
  2005年   558篇
  2004年   521篇
  2003年   432篇
  2002年   375篇
  2001年   351篇
  2000年   352篇
  1999年   311篇
  1998年   248篇
  1997年   269篇
  1996年   258篇
  1995年   179篇
  1994年   163篇
  1993年   140篇
  1992年   121篇
  1991年   92篇
  1990年   94篇
  1989年   72篇
  1988年   67篇
  1987年   30篇
  1986年   22篇
  1985年   33篇
  1984年   38篇
  1983年   35篇
  1982年   35篇
  1981年   3篇
  1980年   7篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
On the basis of the experimental data, we show that the difference between the macroscopic and microscopic fatigue crack growth rates in the second section of the kinetic diagram of fatigue fracture is caused by the effect of crack closure within the limits of its existence. We establish the relationships between the macroscopic and microscopic fatigue crack growth rates and the structure of the material in the second section of the diagram for various values of the load ratio with regard for the effect of crack closure and propose a procedure of examination of the fracture processes in structural materials based on the analysis of microscopic and macroscopic fatigue crack growth rates.  相似文献   
22.
Rotating-bending uniaxial fatigue tests and micro-fatigue crack initiation tests were carried out using a permanent mold cast (PMC) and semi-solid die cast (SDC) with Al−7%Si−0.35%Mg composition in order to examine the relationship between solidification structures and fatigue behaviors. The crack length was measured using a replication method. Fatigue strength was improved in SDC, which was almost consistent with the predicted fatigue strength using the size of Si particle cluster. Resistance to fatigue crack initiation and fatigue strength were improved in SDC owing to the finer Si cluster and to higher ultimate tensile strength. Fatigue crack in PMC was preferentially initiated at pores. For SDC, the fatigue crack was initiated at the Si particle/matrix interface, and then sucessively grew along eutectic cell boundaries.  相似文献   
23.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   
24.
This paper details the deformation mechanism and low‐cycle fatigue life of eutectic solder alloys at high temperature (around 0.8Tm). Grain boundary sliding generally nucleates a wedge‐type cavity that reduces the low‐cycle fatigue life of metals. In this study, grain boundary sliding has promoted intergranular failure contributing to the reduction in fatigue life of Sn–Ag–Cu alloy. However, grain boundary sliding has exerted no deleterious effects on fatigue resistance of eutectic Pb–Sn and Bi–Sn alloys. The phase boundary sliding with very fine microstructure induces exceptional ductility in these alloys leading to superior low‐cycle fatigue endurance for theses eutectic Pb–Sn and Bi–Sn alloys.  相似文献   
25.
The off‐axis fatigue cracking behaviour of notched fibre metal laminates under constant amplitude loading conditions was investigated experimentally and numerically. It was found that the off‐axis fatigue crack initiation life decreased as the off‐axis angles increased. This indicated that the off‐axis laminates raised the applied stress level in the aluminium (Al) layer and subsequently resulted in earlier cracking in the Al layer. The off‐axis fatigue crack initiation lives of notched fibre metal laminates were predicted using lamination theory and an energy‐based critical plane fatigue damage analysis from the literature. After a crack initiated in the Al layer, it was observed that the crack path angles of the off‐axis specimens were neither perpendicular to the fibre nor to the loading direction. A finite‐element model was established for predicting the crack path angles.  相似文献   
26.
27.
Crack closure in fibre metal laminates   总被引:1,自引:0,他引:1  
GLARE is a fibre metal laminate (FML) built up of alternating layers of S2-glass/FM94 prepreg and aluminium 2024-T3. The excellent fatigue behaviour of GLARE can be described with a recently published analytical prediction model. This model is based on linear elastic fracture mechanics and the assumption that a similar stress state in the aluminium layers of GLARE and monolithic aluminium result in the same crack growth behaviour. It therefore describes the crack growth with an effective stress intensity factor (SIF) range at the crack tip in the aluminium layers, including the effect of internal residual stress as result of curing and the stiffness differences between the individual layers. In that model, an empirical relation is used to calculate the effective SIF range, which had been determined without sufficiently investigating the effect of crack closure. This paper presents the research performed on crack closure in GLARE. It is assumed that crack closure in FMLs is determined by the actual stress cycles in the metal layers and that it can be described with the available relations for monolithic aluminium published in the literature. Fatigue crack growth experiments have been performed on GLARE specimens in which crack growth rates and crack opening stresses have been recorded. The prediction model incorporating the crack closure relation for aluminium 2024-T3 obtained from the literature has been validated with the test results. It is concluded that crack growth in GLARE can be correlated with the effective SIF range at the crack tip in the aluminium layers, if it is determined with the crack closure relation for aluminium 2024-T3 based on actual stresses in the aluminium layers.  相似文献   
28.
The S-N-P (stress, number of cycles, failure probability) curves for 2024 T3 and 7075 T7351 aluminium alloys were obtained. Previously, surface treatments of degreasing and different types of anodizing were applied to samples, evaluating the influence of these treatments on the fatigue life of the alloys. The determination of the S-N-P curves was done using Maennig's method. Rotary fatigue was used because this technique produces greater stress on the sample surfaces, the zone in which it is important to evaluate fatigue resistance. Both the transition range and the finite life range were evaluated, calculating the 1, 50 and 99% fracture probability. SEM was performed in order to characterize the fracture micromechanism. The conclusions were that Maennig's method is useful to evaluate fatigue life of these materials in a fast and efficient manner. Moreover, surface treatments produce a decrease in the fatigue life of both alloys, associating this effect with the surface damage produced on each sample during the treatment.  相似文献   
29.
Tensile fatigue behaviours of bitumen–stone adhesion were investigated using a dynamic mechanics analyser under stress‐controlled mode at two temperatures of 5 and 25°C and various controlled‐stress levels. Failure characteristics including interfacial failure and cohesive failure were examined using image analysis of fracture surfaces. Finite‐element analysis on stress distributions was conducted under different temperatures, film thickness and interfacial bonding conditions. A Coulomb–Mohr like criterion in combination with shear and normal stresses is proposed to deal with the extreme thin adhesive layer, which can be further simplified into an adhesive zone without significant loss of accuracy for stress analysis.  相似文献   
30.
CFRP强度复合Weibull分布的物理特征分析   总被引:1,自引:0,他引:1  
本文对CFRP材料疲劳后剩余强度的复合Weibull分布的物理特征进行了初步分析。指出树脂基复合材料失效(破坏)机理的双重性(基体和纤维失效模型)决定了剩余强度(累积损伤程度)测试结果的分布特征。复合Weibull分布曲线的特征与分析结果对设计、使用及材料研究都有重要参考意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号