首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   14篇
  国内免费   11篇
电工技术   1篇
综合类   7篇
化学工业   77篇
金属工艺   55篇
机械仪表   6篇
建筑科学   2篇
矿业工程   5篇
能源动力   1篇
无线电   3篇
一般工业技术   25篇
冶金工业   10篇
  2023年   8篇
  2022年   12篇
  2021年   10篇
  2020年   15篇
  2019年   17篇
  2018年   13篇
  2017年   8篇
  2016年   4篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   8篇
  2009年   12篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
141.
热障涂层中陶瓷层界面处的应力应变场对其破坏起到至关重要的作用,但之前的研究并未考虑热障涂层宏观构型与细观界面的交互影响。本文建立了在轴向和周向具有不同波长的 3D 涂层界面有限元模型,分析了轴向波长和周向波长对涂层界面应力的影响规律,获得了轴向波长和周向波长对涂层界面应力综合影响的关系式。研究结果表明,减小轴向波长会增大涂层界面破坏的风险,增大周向波长能够同时减小周向和轴向的最大应力,有利于降低涂层界面破坏的风险;轴向波长为 0.051 mm,周向波长为 0.030 mm 时,周向最大应力最小,为 243.1MPa;周向波长和轴向波长均大于 0.03 mm 时,周向与轴向应力差值小于 40 MPa,界面应力分布的均匀性较好。本文研究为涂层制备时的界面优化设计提供了理论基础。  相似文献   
142.
INVESTIGATIONSONTHEFORMATIONOFINITIALCRACKSINTHERMALBARRIERCOATINGSPREPAREDBYEB-PVDS.K.Gong;L.Deng;F.S.LiuandH.B.Xu(Departmen...  相似文献   
143.
选择La1.4Nd0.6Zr2O7(LNZ)为面层材料,质量比为1∶1的Mo与LNZ复合粉末(ML)为过渡层材料,用等离子喷涂法在高温Mo合金上制备双层结构热障涂层(ML/LNZ)。研究该涂层在1200℃的热震行为,用XRD分析失效后涂层的物相组成,并借助扫描电子显微镜和能谱对热震后涂层表面不同位置进行观察比较。结果表明,涂层在1200℃下的热循环寿命非常短,涂层沿粘结层与基体的界面剥落。而高温下Mo的氧化及挥发性氧化产物(MoO3)与涂层之间的化学反应是导致ML/LNZ涂层快速失效的主要原因。与氧化钼具有良好的热化学相容性是选择Mo基体上热障涂层的首要条件。  相似文献   
144.
《Ceramics International》2020,46(11):19217-19227
In this study, nanostructured YSZ powders were deposited on the Hastalloy X Superalloy substrate coated with a metallic bond coat by plasma spraying to produce a nanostructured thermal barrier coating with bimodal microstructure. After that, the coated samples were heat-treated using a Nd:YAG laser. Then, the microstructures of the conventional and nanostructured TBCs before and after the laser glazing process were examined using a scanning electron microscope (SEM). The coating phases were studied by X-ray diffractometry (XRD). The high-temperature corrosion behavior of the nanostructured plasma sprayed coating in the presence of Vanadium pentoxide and Sodium sulfate molten salt was compared with that of the conventional coatings before and after laser treatment at 1050 °C. The hot corrosion results showed that the coatings had a similar degradation mechanism based on which the corrosive molten salt reacted with the stabilizer of YSZ, producing hot corrosion products such as YVO4. It led to an unwanted phase transformation from tetragonal (t) to monoclinic (m) Zirconia and the final degradation of the TBC system. However, reducing molten salt penetration, decreasing surface roughness and, reduction of the specific surface area are three important mechanisms that improved hot corrosion resistance, finally extending the lifetime of the glazed samples. The results also showed that the nanostructured TBC had higher hot corrosion resistance in comparison with other samples.  相似文献   
145.
纳米陶瓷粉体的应用现状与展望   总被引:2,自引:0,他引:2  
纳米陶瓷粉体在精细陶瓷、功能陶瓷、生物陶瓷及精细化工材料等高技术领域中得到了广泛的应用,已成为当今发展高技术材料的基石.分析纳米陶瓷粉体的应用研究现状,对研究其发展前景具有重要的现实意义.  相似文献   
146.
《Ceramics International》2022,48(5):6199-6207
TiAl alloys are promising structural materials in the field of gas turbine engines, due to their low density and high specific strength. Applying thermal barrier coatings (TBCs) is an effective method to increase the service temperature and lifetime of TiAl alloys. In this work, a YSZ/TiAlCrY bilayer system was fabricated by air and vacuum plasma spray techniques on TiAl alloys. The thermal shock behavior was focused on and compared with the traditional YSZ/NiCrAlY system by means of a water-quenching test at 1100 °C. The results show that the YSZ/TiAlCrY system exhibited excellent thermal cycling lifetime with over 210 cycles, which was almost 3 times that of the traditional YSZ/NiCrAlY system on Ni-based superalloys. The failure mechanism was analyzed based on microstructural observations and residual stress calculations. It is found that without the formation of new brittle phases at the interface and suitable CTE were the key factors for the excellent thermal shock resistance of the YSZ/TiAlCrY system on TiAl alloy substrates.  相似文献   
147.
Nanostructured thermal barrier coatings (TBCs) often provide high degradation resistance, as well as extended lifetime. However, the underlying mechanism has not been fully understood. In this study, the sintering characteristics of nanostructured yttria-stabilized zirconia (YSZ) coatings were investigated, and compared with those of the conventional YSZ coatings. Multiscale characterizations of the changes in microstructures and properties were performed. Results showed that the enhanced high-performance durability was mainly attributed to different sintering mechanisms of lamellar zones and nanozones. Sintering characteristics of the lamellar zones were similar to those of the conventional coatings. Stage-sensitive healing of two-dimensional (2D) pores dominated the sintering behavior of the lamellar zones. However, the differential densification rates between nanozones and lamellar zones of the nanostructured TBCs led to the formation of coarse voids. This counteractive effect, against healing of 2D pores, was the main factor contributing to the retardation of the performance degradation of bimodal TBCs during thermal exposure. Based on the understanding of the performance-degradation resistance, an outlook towards TBCs with higher performances was presented.  相似文献   
148.
In the Plasma Spray-Physical Vapor Deposition (PS-PVD) process, columnar structured coatings are deposited mainly from the vapor phase due to the intensive evaporation of the feedstock powder. This paper highlights the application of electron backscatter diffraction (EBSD) for the characterization of columnar structured ceramic PS-PVD coatings. The growth processes of PS-PVD coatings could be elucidated, developing from small equiaxed crystals to large columnar crystals. Furthermore, the main effect of the torch swing on coating deposition could be the interruption of crystal growth and thus repeated nucleation. This may have a similar effect as slowly rotating the substrate in Electron Beam-Physical Vapor Deposition (EB-PVD).  相似文献   
149.
In thermal barrier coatings (TBCs) of heavy-duty gas turbines, thermally grown oxide (TGO) develops in two stages, i.e. firstly, a thin layer of dense protective α-Al2O3 forms slowly, and then, a layer of porous detrimental mixed oxide (MO) between top coat (TC) and α-Al2O3 appears. During long-term isothermal oxidation at high temperature, the failure of TBCs usually occurs when a critical thickness of MO is reached, but the exact failure mechanism is still largely unclear, let alone the related stress development. In this paper, we analyze the stress evolution and the resultant failure modes due to the whole-layer growth of uniform MO. The results show that it is MO, rather than α-Al2O3, that is mainly responsible for the micro-cracking and/or delamination in TBCs. The fast growth of expansive MO induces catastrophic stresses, which leads to micro-cracking in the α-Al2O3 layer. The cracking of α-Al2O3 layer reduces the oxidation resistance and further accelerates the MO growth. Our theoretical analysis provides a reasonable explanation of the experimental results.  相似文献   
150.
Nanostructured thermal barrier coatings (TBCs) often exhibit bimodal structure comprised of both nanozones and lamellar zones, and therefore, their sintering behaviour can be different from that of conventional coatings. In this study, changes in the microstructure and properties of nanostructured TBCs were investigated. The results show that their microstructural evolution is highly time-sensitive during long thermal exposure at 1150?°C. In stage I (0–20?h), changes in mechanical properties were significant. The dominant microstructural change was faster healing of flat pores, whereas the macroscopic structure seemed less affected. In stage II (20–500?h), the changes in properties were much slighter and some large macroscopic voids appeared. In brief, the microscopic healing of pores in lamellar zones leads to a significant change in mechanical properties in stage I, whereas sintering of the nanozones leads to macroscopic voids in stage II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号