首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12275篇
  免费   1265篇
  国内免费   461篇
电工技术   194篇
综合类   713篇
化学工业   4243篇
金属工艺   621篇
机械仪表   209篇
建筑科学   772篇
矿业工程   270篇
能源动力   576篇
轻工业   1529篇
水利工程   395篇
石油天然气   712篇
武器工业   40篇
无线电   697篇
一般工业技术   1815篇
冶金工业   849篇
原子能技术   225篇
自动化技术   141篇
  2024年   47篇
  2023年   290篇
  2022年   409篇
  2021年   452篇
  2020年   546篇
  2019年   447篇
  2018年   377篇
  2017年   457篇
  2016年   454篇
  2015年   442篇
  2014年   645篇
  2013年   778篇
  2012年   763篇
  2011年   824篇
  2010年   614篇
  2009年   697篇
  2008年   621篇
  2007年   742篇
  2006年   654篇
  2005年   493篇
  2004年   428篇
  2003年   380篇
  2002年   335篇
  2001年   267篇
  2000年   250篇
  1999年   225篇
  1998年   176篇
  1997年   133篇
  1996年   149篇
  1995年   125篇
  1994年   108篇
  1993年   80篇
  1992年   89篇
  1991年   81篇
  1990年   75篇
  1989年   57篇
  1988年   45篇
  1987年   40篇
  1986年   41篇
  1985年   42篇
  1984年   41篇
  1983年   20篇
  1982年   19篇
  1981年   13篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
有机肥料中氮磷钾测定前处理方法改进研究   总被引:1,自引:0,他引:1  
为提高有机肥料中氮、磷、钾的测定效率,对有机肥料前处理过程进行了改进,并与农业标准NY525-2012的分析结果进行了比较。结果表明,改进方法与NY525-2012分析结果无显著性差异,可以代替NY525-2012对有机肥料中氮、磷、钾测定时进行前处理。  相似文献   
992.
The copper and cobalt oxides composites coatings on aluminum substrates have been successfully synthesized via sol-gel method using nitrate-based sol precursors. The composites were characterized by X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), and UV–Vis–NIR spectrophotometry. The sol-gel reactions were discussed and Molecular Dynamics (MD) simulation was integrated into the study to predict molecules assembly properties. The XRD analyses revealed that the CuO and the Co3O4 composites were formed after the annealing process with the average difference of the calculated lattice parameters compared to ICDDs was 1.17%. The surface electronic structure was mainly consisted of tetrahedral Cu(I), octahedral Cu(II), tetrahedral Co(II), octahedral Co(III) as well as surface, sub-surface and lattice oxygen O?. The XRD, XPS and MD simulation results showed that there was minimal (or possibly non-existing) indication of copper-cobalt mixed phase oxides formations. FESEM and AFM surveys revealed that the coating had a porous surface composed of interlinked nanoparticles in the range of ~?10 to ~?40?nm. UV–Vis–NIR reflectance spectra showed that the sol precursors concentration and the dip-drying cycle significantly influenced the absorptance value with optimum absorptance (α) of 88.7% exhibited by coating synthesized using sol concentration of 0.1?M and 10 dip-drying cycles. High absorptance value and simplicity in the synthesis process render the coatings to be very promising candidates for solar selective absorber (SSA) applications.  相似文献   
993.
Two‐dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon‐based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface‐to‐volume ratios, and surface charge. Here, we focus on state‐of‐the‐art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.  相似文献   
994.
995.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   
996.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
997.
Grazed pastures emit ammonia (NH3) into the atmosphere; the size of the NH3 loss appears to be related to nitrogen (N) application rate.The micrometeorological mass balance method was used to measure NH3 volatilization from rotationally grazed swards on three plots in the autumn of 1989 and throughout the 1990 growing season. The aim of the research was to derive a mathematical relationship between NH3 volatilization and N application rate, which would vary between soil type and weather conditions. In both years the plots received a total of 250, 400 or 550 kg N ha–1 as calcium ammonium nitrate (CAN) split over 6 to 8 dressings. The number of grazing cycles ranged from 7 to 9 for the three N plots.In the last two grazing cycles of 1989, NH3 losses were 3.8, 12.0 and 14.7 kg N ha–1 for the 250N, 400N and 550N plots, which was equivalent to 5.3%, 13.9% and 14.4% of the amount of N excreted on the sward, respectively. In 1990, NH3 losses were 9.1, 27.0 and 32.8 kg N ha–1 for the 250N, 400N and 550N plots, which was equivalent to 3.3%, 6.9% and 6.9% of the N excreted, respectively. Differences in urine composition between the plots were relatively small. Rainfall and sward management affected the size of the NH3 volatilization rate. Volatilization of NH3 was related to N excretion and N application rate.A calculation procedure is given to enable the estimation of NH3 volatilization from N application rate. Adjustments can be made for grazing efficiency, grazing selectivity, N retention in milk and liveweight gain, concentrate N intake and milking duration. Losses of NH3 increase progressively with an increase in N application rate until herbage yield reaches a maximum at an application rate of about 500 kg N ha–1 yr–1.  相似文献   
998.
Recently, lead-free piezoelectric thin films have received increasing attention due to the growing demands for mircoelectromechanical systems and the significant progress in lead-free piezoelectric research. Here, potassium sodium niobate [(K, Na)NbO3 (KNN)]-based thin films were fabricated via a sol-gel method. The effects of pyrolysis temperature on the resulting microstructure and electrical properties of KNN-based films were investigated. The KNN-based film pyrolyzed at 550°C and annealed at 700°C shows a dominant (100) orientation with a high texturing degree of 91.7%. The microstructures, morphologies, piezo- and ferroelectric properties of the KNN-based films were discussed in association with different pyrolysis temperatures. The crystallization mechanism of the (100) textured KNN-based thin films was elaborated in detail.  相似文献   
999.
Explicit approximate equations for estimating the conversion factor of fuel‐nitrogen into nitric oxide are presented. They depend on the fuel‐nitrogen mole fraction, the initial nitric oxide mole fraction, and the kinetics‐equilibrium mole fraction of nitric oxide. This last parameter expresses a limiting value of fuel‐nitrogen conversion; it includes the complex nitrogen chemistry and depends thus on combustion conditions. Experimental results demonstrate that the kinetics‐equilibrium mole fraction for fuel‐lean and high‐temperature conditions can be well estimated by the chemical‐equilibrium mole fraction, but for lower temperatures the kinetics‐equilibrium mole fraction has to be described by other correlations.  相似文献   
1000.
A protonated form of the n?=?4 layered bismuth containing perovskite-like titanate K2.5Bi2.5Ti4O13 belonging to Ruddlesden-Popper phases was prepared via ion exchange reaction of interlayer K+ with protons. Its composition was investigated by TG ICP and EDX analysis was found to be H2K0.5Bi2.5Ti4O13·H2O. The thermal behavior of the obtained phase was investigated by STA coupled with mass-spectrometry, the structural changes, happening with the sample during heating, were examined by XRD. It was shown that the as-prepared hydrated phase undergoes two-stage dehydration at low temperatures (up to 160?°C). The further heating leads to the gradual decomposition and crystallization of new phases, notably Bi2Ti2O7, Bi4Ti3O12 and Bi2Ti4O11. The morphology of the as-prepared sample and samples after heat treatment was examined using SEM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号