首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31827篇
  免费   2538篇
  国内免费   1033篇
电工技术   2694篇
综合类   2517篇
化学工业   4089篇
金属工艺   963篇
机械仪表   2052篇
建筑科学   5757篇
矿业工程   1603篇
能源动力   3081篇
轻工业   1612篇
水利工程   866篇
石油天然气   1410篇
武器工业   800篇
无线电   1336篇
一般工业技术   3825篇
冶金工业   1423篇
原子能技术   341篇
自动化技术   1029篇
  2024年   102篇
  2023年   308篇
  2022年   695篇
  2021年   904篇
  2020年   899篇
  2019年   655篇
  2018年   612篇
  2017年   864篇
  2016年   896篇
  2015年   950篇
  2014年   1968篇
  2013年   1881篇
  2012年   2229篇
  2011年   2460篇
  2010年   1781篇
  2009年   1874篇
  2008年   1642篇
  2007年   2214篇
  2006年   2073篇
  2005年   1843篇
  2004年   1568篇
  2003年   1370篇
  2002年   1218篇
  2001年   907篇
  2000年   758篇
  1999年   571篇
  1998年   432篇
  1997年   362篇
  1996年   265篇
  1995年   258篇
  1994年   191篇
  1993年   148篇
  1992年   110篇
  1991年   90篇
  1990年   58篇
  1989年   58篇
  1988年   29篇
  1987年   28篇
  1986年   16篇
  1985年   14篇
  1984年   26篇
  1983年   18篇
  1982年   11篇
  1981年   6篇
  1980年   9篇
  1979年   4篇
  1978年   3篇
  1976年   3篇
  1959年   4篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
大气污染物排放清单是空气质量模拟和空气污染治理的重要依据.本研究比较分析了两套覆盖江苏省的2017年大气污染物排放清单,即分别由上海市环境科学研究院、江苏省环境科学研究院编制的"长三角清单"和"江苏省清单",并结合区域空气质量模型CMAQ评估不同清单对长三角地区2017年1、4、7、10月的空气质量模拟的影响.清单比较结果表明,除二氧化硫(SO2)以外,江苏省清单估算的各污染物排放量较长三角清单低.通过与观测数据比较,发现两套清单对SO2、氮氧化物(NOx)、臭氧(O3)和细颗粒物(PM2.5)的模型模拟性能均较好.江苏省清单与长三角清单两者的模拟结果空间分布接近,其中江苏省清单模拟的PM2.5和O3在长三角多数地区略低于长三角清单的模拟结果(1月O3除外).江苏省清单与长三角清单均能够用于空气质量模式模拟,可为江苏地区的细颗粒物和光化学烟雾污染的控制策略制定提供参考.  相似文献   
12.
Endotoxin exacerbates asthma. We designed the Louisa Environmental Intervention Project (LEIP) and assessed its effectiveness in reducing household endotoxin and improving asthma symptoms in rural Iowa children. Asthmatic school children (N = 104 from 89 homes) of Louisa and Keokuk counties in Iowa (aged 5-14 years) were recruited and block-randomized to receive extensive (education + professional cleaning) or educational interventions. Environmental sampling collection and respiratory survey administration were done at baseline and during three follow-up visits. Mixed-model analyses were used to assess the effect of the intervention on endotoxin levels and asthma symptoms in the main analysis and of endotoxin reduction on asthma symptoms in exploratory analysis. In the extensive intervention group, dust endotoxin load was significantly reduced in post-intervention visits. The extensive compared with the educational intervention was associated with significantly decreased dust endotoxin load in farm homes and less frequent nighttime asthma symptoms. In exploratory analysis, dust endotoxin load reduction from baseline was associated with lower total asthma symptoms score (Odds ratio: 0.52, 95% confidence interval: 0.29-0.92). In conclusion, the LEIP intervention reduced household dust endotoxin and improved asthma symptoms. However, endotoxin reductions were not sustained post-intervention by residents.  相似文献   
13.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
14.
《Ceramics International》2021,47(22):31413-31422
Based on reactive air brazing (RAB), we designed a new type of sealant (Ag–xCuAlO2) for joining 3 mol.% yttria-stabilized zirconia (YSZ) ceramics and AISI 310S stainless steel. The CuAlO2 content affected the wettability of the sealant on the YSZ surface, and the joints had a high shear strength when Ag–2 wt.%CuAlO2, which had a small contact angle on the YSZ substrate, was used as the sealant. In addition, the thickness of the oxide layer was reduced compared to that for the Ag–CuO sealant. The effects of the processing parameters on the microstructure and shear strength of the joints were investigated, and the as-brazed joints reached their highest shear strength (93.7 MPa) when brazed at 1040 °C for 30 min. After high-temperature oxidation at 800 °C for 200 h, the shear strength of the joints remained at 50 MPa, and no apparent change in the microstructure was observed, proving that the joints possessed excellent oxidation resistance.  相似文献   
15.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
16.
Due to the high health risks associated with indoor air pollutants and long-term exposure, indoor air quality has received increasing attention. In this study, we put emphasis on the molecular composition, source emissions, and chemical aging of air pollutants in a residence with designed activities mimicking ordinary Hong Kong homes. More than 150 air pollutants were detected at molecular level, 87 of which were quantified at a time resolution of not less than 1 hour. The indoor-to-outdoor ratios were higher than 1 for most of the primary air pollutants, due to emissions of indoor activities and indoor backgrounds (especially for aldehydes). In contrast, many secondary air pollutants exhibited higher concentrations in outdoor air. Painting ranked first in aldehyde emissions, which also caused great enhancement of aromatics. Incense burning had the highest emissions of particle-phase organics, with vanillic acid and syringic acid as markers. The other noteworthy fingerprints enabled by online measurements included linoleic acid, cholesterol, and oleic acid for cooking, 2,5-dimethylfuran, stigmasterol, iso-/anteiso-alkanes, and fructose isomers for smoking, C28-C34 even n-alkanes for candle burning, and monoterpenes for the use of air freshener, cleaning agents, and camphor oil. We showed clear evidence of chemical aging of cooking emissions, giving a hint of indoor heterogeneous chemistry. This study highlights the value of organic molecules measured at high time resolutions in enhancing our knowledge on indoor air quality.  相似文献   
17.
A cross-sectional study was conducted to investigate the impact of solid fuel use for heating and cooking on blood pressure (BP) and hypertension, using data from the China Health and Retirement Longitudinal Study (CHARLS). The primary fuels used for indoor heating and cooking were collected by questionnaires, respectively. Hypertension was defined based on self-report of physician's diagnosis, and/or measured BP, and/or anti-hypertensive medication use. Multivariate logistic regression models were constructed to assess the associations. Among 10 450 eligible participants, 68.2% and 57.2% used indoor solid fuel for heating and cooking, respectively. Compared with none/clean fuel users, solid fuel for heating was associated with elevated BP (adjusted β: 2.02, 95% CI: 1.04–3.01 for systolic BP; adjusted β: 1.36, 95% CI: 0.78–1.94 for diastolic BP) and increased risk of hypertension (adjusted odds ratio: 1.15, 95% CI: 1.03–1.29). The impact of indoor solid fuel for heating on BP was more evident in rural and north residents, and hypertensive patients. We did not detect any significant associations between solid fuel use for cooking and BP/hypertension. Indoor solid fuel use is prevalent in China, especially in the rural areas. Its negative impact on BP suggested that modernization of household fuel use may help to reduce the burden of hypertension in China.  相似文献   
18.
在内径120 mm的半圆柱形内循环流化床中,以平均粒径387 nm的Ti O2为原料,考察了单独通入流化气、射流气和同时通入流化气和射流气三种流化方式下超细粉的流化特性以及射流气速对超细粉聚团尺寸的影响。结果表明:同时通入流化气和射流气时,流化气能促进粉体循环,消除环隙死区;高速射流能有效破碎聚团,显著减小聚团尺寸,从而使超细粉在环隙区与导流管之间形成稳定循环,小聚团在环隙区实现平稳流态化。随着射流气速的增大,聚团尺寸减小,粒度分布变窄,在射流气速分别为60,90,120,150 m/s的条件下,聚团平均直径分别为194,158,147,135μm。  相似文献   
19.
People spend approximately 80% of their time indoor, making the understanding of the indoor chemistry an important task for safety. The high surface-area-to-volume ratio characteristic of indoor environments leads the semi-volatile organic compounds (sVOCs) to deposit on the surfaces. Using a long path absorption photometer (LOPAP), this work investigates the formation of nitrous acid (HONO) through the photochemistry of adsorbed nitrate anions and its enhancement by the presence of furfural. Using a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), this work also investigates the surface emissions of VOCs from irradiated films of furfural and a mix of furfural and nitrate anions. Among the emitted VOCs, 2(5H)-furanone/2-Butenedial was observed at high concentrations, leading to maleic anhydride formation after UV irradiation. Moreover, the addition of potassium nitrate to the film formed NOx and HONO concentrations up to 10 ppb, which scales to ca. 4 ppb for realistic indoor conditions. This work helps to understand the high levels of HONO and NOx measured indoors.  相似文献   
20.
Abrasive jet micro-machining (AJM) uses compressed air carrying abrasive solid particles to micro-machine a variety of features into surfaces. If the feature sizes are less than the size of the abrasive jet footprint, then a patterned erosion-resistant mask is used to protect the substrate material, leaving exposed areas to define the features. Previous investigations have revealed a ‘blast lag’ phenomenon in which, for the same dose of abrasive particles, narrower mask openings lead to channels that are shallower than wider ones. Blast lag occurs when using AJM on brittle substrates because of the natural tendency to rapidly form a V-shaped cross-sectional profile which inhibits abrasive particle strikes on the narrow vertex at the feature centerline. In this paper, the blast lag phenomenon is studied when using AJM to machine a network of microfluidic channels. It is found that, in some cases, differences in blast lag occurring at channel intersections and within the channels themselves, can lead to channel networks of nonuniform depth. A previously developed surface evolution model is adapted to allow prediction of the onset of blast lag in the channels and intersections and thus explain these differences. Finally, methods to eliminate the differences are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号