首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   902篇
  免费   72篇
  国内免费   6篇
综合类   8篇
化学工业   428篇
金属工艺   7篇
机械仪表   2篇
建筑科学   9篇
轻工业   404篇
一般工业技术   14篇
冶金工业   95篇
自动化技术   13篇
  2024年   16篇
  2023年   33篇
  2022年   211篇
  2021年   169篇
  2020年   62篇
  2019年   63篇
  2018年   48篇
  2017年   41篇
  2016年   29篇
  2015年   33篇
  2014年   46篇
  2013年   26篇
  2012年   32篇
  2011年   19篇
  2010年   17篇
  2009年   13篇
  2008年   24篇
  2007年   26篇
  2006年   13篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1988年   2篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1967年   1篇
排序方式: 共有980条查询结果,搜索用时 15 毫秒
21.
Both obesity and esophageal adenocarcinoma (EAC) rates have increased sharply in the United States and Western Europe in recent years. EAC is a classic example of obesity-related cancer where the risk of EAC increases with increasing body mass index. Pathologically altered visceral fat in obesity appears to play a key role in this process. Visceral obesity may promote EAC by directly affecting gastroesophageal reflux disease and Barrett’s esophagus (BE), as well as a less reflux-dependent effect, including the release of pro-inflammatory adipokines and insulin resistance. Deregulation of adipokine production, such as the shift to an increased amount of leptin relative to “protective” adiponectin, has been implicated in the pathogenesis of BE and EAC. This review discusses not only the epidemiology and pathophysiology of obesity in BE and EAC, but also molecular alterations at the level of mRNA and proteins associated with these esophageal pathologies and the potential role of adipokines and myokines in these disorders. Particular attention is given to discussing the possible crosstalk of adipokines and myokines during exercise. It is concluded that lifestyle interventions to increase regular physical activity could be helpful as a promising strategy for preventing the development of BE and EAC.  相似文献   
22.
Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of antihyperglycemic drugs that enhance appropriate pancreatic β-cell secretion, pancreatic α-cell (glucagon) suppression, decrease liver glucose production, increase satiety through their action on the central nervous system, slow gastric emptying time, and increase insulin action on peripheral tissue. They are effective in the management of type 2 diabetes mellitus and have a favorable effect on weight loss. Their cardiovascular and renal safety has been extensively investigated and confirmed in many clinical trials. Recently, evidence has shown that in addition to the existing approaches for the treatment of obesity, semaglutide in higher doses promotes weight loss and can be used as a drug to treat obesity. However, some T2DM and obese patients do not achieve a desired therapeutic effect of GLP-1 receptor agonists. This could be due to the multifactorial etiologies of T2DM and obesity, but genetic variability in the GLP-1 receptor or signaling pathways also needs to be considered in non-responders to GLP-1 receptor agonists. This review focuses on the pharmacological, clinical, and genetic factors that may influence the response to GLP-1 receptor agonists in the treatment of type 2 diabetes mellitus and obesity.  相似文献   
23.
24.
Peptide DIIADDEPLT (Pep19) has been previously suggested to improve metabolic parameters, without adverse central nervous system effects, in a murine model of diet-induced obesity. Here, we aimed to further evaluate whether Pep19 oral administration has anti-obesogenic effects, in a well-established high-fat diet-induced obesity model. Male Swiss mice, fed either a standard diet (SD) or high-fat diet (HFD), were orally administrated for 30 consecutive days, once a day, with saline vehicle or Pep19 (1 mg/kg). Next, several metabolic, morphological, and behavioral parameters were evaluated. Oral administration of Pep19 attenuated HFD body-weight gain, reduced in approximately 40% the absolute mass of the endocrine pancreas, and improved the relationship between circulating insulin and peripheral insulin sensitivity. Pep19 treatment of HFD-fed mice attenuated liver inflammation, hepatic fat distribution and accumulation, and lowered plasma alanine aminotransferase activity. The inguinal fat depot from the SD group treated with Pep19 showed multilocular brown-fat-like cells and increased mRNA expression of uncoupling protein 1 (UCP1), suggesting browning on inguinal white adipose cells. Morphological analysis of brown adipose tissue (BAT) from HFD mice showed the presence of larger white-like unilocular cells, compared to BAT from SD, Pep19-treated SD or HFD mice. Pep19 treatment produced no alterations in mice behavior. Oral administration of Pep19 ameliorates some metabolic traits altered by diet-induced obesity in a Swiss mice model.  相似文献   
25.
The microglial fatty-acid-binding protein 4-uncoupling protein 2 (FABP4-UCP2) axis is a key regulator of neuroinflammation in high-fat-diet (HFD)-fed animals, indicating a role for FABP4 in brain immune response. We hypothesized that the FABP4-UCP2 axis is involved in regulating diet-induced cognitive decline. We tested cognitive function in mice lacking microglial FABP4 (AKO mice). Fifteen-week-old male AKO and wild-type (WT) mice were maintained on 60% HFD or normal chow (NC) for 12 weeks. Body composition was measured using EchoMRI. Locomotor activity, working memory, and spatial memory were assessed using behavioral tests (open field, T-maze, and Barnes maze, respectively). Hippocampal microgliosis was assessed via immunohistochemical staining. An inflammatory cytokine panel was assayed using hippocampal tissue. Real-time RT-PCR was performed to measure microglial UCP2 mRNA expression. Our data support that loss of FABP4 prevents cognitive decline in vivo. HFD-fed WT mice exhibited impaired long- and short-term memory, in contrast with HFD-fed AKO mice. HFD-fed WT mice had an increase in hippocampal inflammatory cytokine expression (IFNγ, IL-1β, IL-5, IL-6, KC/GRO(CXCL1), IL-10, and TNFα) and microgliosis, and decreased microglial UCP2 expression. HFD-fed AKO mice had decreased hippocampal inflammatory cytokine expression and microgliosis and increased microglial UCP2 expression compared to HFD-fed WT mice. Collectively, our work supports the idea that the FABP4-UCP2 axis represents a potential therapeutic target in preventing diet-induced cognitive decline.  相似文献   
26.
Neurotensin (NT) is a small peptide with pleiotropic functions, exerting its primary actions by controlling food intake and energy balance. The first evidence of an involvement of NT in metabolism came from studies on the central nervous system and brain circuits, where NT acts as a neurotransmitter, producing different effects in relation to the specific region involved. Moreover, newer interesting chapters on peripheral NT and metabolism have emerged since the first studies on the NT-mediated regulation of gut lipid absorption and fat homeostasis. Intriguingly, NT enhances fat absorption from the gut lumen in the presence of food with a high fat content, and this action may explain the strong association between high circulating levels of pro-NT, the NT stable precursor, and the increased incidence of metabolic disorders, cardiovascular diseases, and cancer observed in large population studies. This review aims to provide a synthetic overview of the main regulatory effects of NT on several biological pathways, particularly those involving energy balance, and will focus on new evidence on the role of NT in controlling fat homeostasis, thus influencing the risk of unfavorable cardio–metabolic outcomes and overall mortality in humans.  相似文献   
27.
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.  相似文献   
28.
Mitochondrial uncoupling protein 1 (UCP1) is the crucial mechanistic component of heat production in classical brown fat and the newly identified beige or brite fat. Thermogenesis inevitably comes at a high energetic cost and brown fat, ultimately, is an energy-wasting organ. A constrained strategy that minimizes brown fat activity unless obligate will have been favored during natural selection to safeguard metabolic thriftiness. Accordingly, UCP1 is constitutively inhibited and is inherently not leaky without activation. It follows that increasing brown adipocyte number or UCP1 abundance genetically or pharmacologically does not lead to an automatic increase in thermogenesis or subsequent metabolic consequences in the absence of a plausible route of concomitant activation. Despite its apparent obviousness, this tenet is frequently ignored. Consequently, incorrect conclusions are often drawn from increased BAT or brite/beige depot mass, e.g., predicting or causally linking beneficial metabolic effects. Here, we highlight the inherently inactive nature of UCP1, with a particular emphasis on the molecular brakes and releases of UCP1 activation under physiological conditions. These controls of UCP1 activity represent potential targets of therapeutic interventions to unlock constraints and efficiently harness the energy-expending potential of brown fat to prevent and treat obesity and associated metabolic disorders.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号