首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7142篇
  免费   594篇
  国内免费   337篇
电工技术   48篇
综合类   253篇
化学工业   677篇
金属工艺   126篇
机械仪表   151篇
建筑科学   10篇
矿业工程   4篇
能源动力   15篇
轻工业   2380篇
水利工程   1篇
石油天然气   45篇
武器工业   18篇
无线电   598篇
一般工业技术   3482篇
冶金工业   45篇
原子能技术   9篇
自动化技术   211篇
  2024年   98篇
  2023年   219篇
  2022年   271篇
  2021年   354篇
  2020年   327篇
  2019年   324篇
  2018年   312篇
  2017年   380篇
  2016年   288篇
  2015年   236篇
  2014年   380篇
  2013年   427篇
  2012年   502篇
  2011年   522篇
  2010年   345篇
  2009年   475篇
  2008年   237篇
  2007年   377篇
  2006年   367篇
  2005年   236篇
  2004年   251篇
  2003年   171篇
  2002年   163篇
  2001年   115篇
  2000年   88篇
  1999年   90篇
  1998年   70篇
  1997年   54篇
  1996年   47篇
  1995年   41篇
  1994年   48篇
  1993年   53篇
  1992年   64篇
  1991年   46篇
  1990年   36篇
  1989年   37篇
  1988年   8篇
  1987年   6篇
  1986年   1篇
  1982年   1篇
  1980年   4篇
  1962年   1篇
  1959年   1篇
排序方式: 共有8073条查询结果,搜索用时 672 毫秒
61.
The rising demand for faster and more efficient electronic devices forces electronics industry to shift toward terahertz frequencies. Therefore there is a growing need for efficient, lightweight, and easy to produce absorbing materials in the terahertz range for electromagnetic interference (EMI) shielding and related applications. This study presents a study on basic optical properties of two types polymer-based composites loaded with two-dimensional structures—graphene and MXene phases (Ti2C). In said range, total EMI shielding efficiency (SE) and its components, the absorption coefficient (α ), refractive index, and complex dielectric function are investigated. The ratio of SE absorption component to reflection component (SEABS :SER ) of fabricated composites is equal or higher than 30:1 in over 80% of studied range. The fabricated composites exhibit low (<0.1) loss tangent in studied range. The addition of 1 wt% of graphene increases the composite α over 10-fold in respect to pure polymer–up to 60 cm−1 for frequency higher than 2 THz.  相似文献   
62.
In order to obtain casein edible films with great packing performance, gelatin as the reinforcing additive with different ratios were loaded via two methods including layer- by- layer and blending. A comparative study on structure properties between double layers and blending films made from casein and gelatin was obtained by scanning electron microscopy and Fourier transform infrared spectroscopy. The difference between the films' packing characters were conducted by water vapor permeability (WVP), optical property, and mechanical properties (including tensile strength (TS) and elongation (EAB)). The results showed that the degree of films roughness increased and the structural stability decreased as the increase of gelatin additive ratio in both double layers and blending films. Thickness and WVP both displayed a trend of increasing first then decreasing at the dividing of gelatin instead of casein in 50%. Importantly, WVP values in double layers film with a largest value of 6.95 gm−1Pa−1s−1 was higher than blending films, observably (P < 0.05). Additionally, TS in blending film was increased by 23.44% than double layers film under the gelatin additive proportion of 70%, and EAB value in double layers film was larger by 207.65% than blending film under the gelatin additive proportion of 10%.  相似文献   
63.
The present study investigated the fabrication and characterization of bio-based sustainable films composed of a terrestrial plant raw material, namely Opuntia ficus-indica (OFI) cladodes powder (CP) and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the casted films was evaluated at four different contents, namely 30, 40, 50 and 60 wt%. The films present UV-blocking properties, as well as moderate mechanical performance, thermal stability, and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young's modulus, tensile strength, and water contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal, and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.  相似文献   
64.
Research on biopolymers-based active films produced with natural antioxidants and/or antimicrobials has gained attention over the last few years; however, anti-mold activity has been less studied than those of anti-bacteria. The aim of this work was the development and characterization of bi-layer films based on gelatin with natamycin and/or “Pitanga” leaf hydroethanolic extract in the second thin layer in order to determine the effects of these bioactive compounds on bi-layered film properties. The films were characterized regarding their moisture content and solubility in water, optical properties, microstructure, mechanical and thermal properties, water contact angle, water vapor permeability, UV/visible light transmission, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and antioxidant and anti-mold activities. Active films presented activity against Penicillium spp and Aspergillus niger and demonstrated antioxidant activity, as measured by ABTS •+ and DPPH methods. Neither additive used in the films' second layer significantly affected the films' moisture content, thermal properties or the molecular interactions of the polymer matrix, assessed by FTIR, although some mechanical properties were affected, and the water contact angle. In conclusion, bi-layer films have reduced the quantity of additives required to maintain the antioxidant and anti-mold activities, as compared to similar monolayer films of the same thickness.  相似文献   
65.
Poly (vinyl alcohol)/polylactic acid (PVA/PLA) blend film, which is environment friendly and has potential applications in food and electronic packaging fields, was fabricated by melt extrusion casting. Fourier transform infrared spectroscopy analysis confirmed the formation of the hydrogen bonding between PLA and PVA, which improved the compatibility of PLA with PVA, making PLA uniformly dispersed in PVA matrix as small spheres, even when PLA content increase to 15 wt%. In this way, the original hydrogen bond network among PVA was disturbed and the chain mobility of PVA was activated, endowing PVA/PLA blends with lower melt viscosity than bot modified PVA and PLA, and the blend films with the increased crystallinity, mechanical property, and water resistance. Compared with PVA film, the crystallinity, tensile strength and Young's modulus of the blend film with 15 wt% PLA, respectively, increased by 15.1%, 9 and 51 MPa, and the water contact angle enlarged from 23° to 60°.  相似文献   
66.
Polyethylene terephthalate (PET)/nano-hydroxyapatite (nHAp) composite granules were obtained using twin-screw extruder. Preforms were prepared by injection molding and then PET/nHAp bottles were produced by blow molding. For PET bottles with nHAp, the migration amounts of carboxylic acid (COOH), acetaldehyde (AA), diethylene glycol (DEG), and isophthalic acid (IPA); glass transition temperature (Tg); melting temperature (Tm); and the maximum crystallization temperature (Tcry) were measured. The load-carrying capacity, burst strength, stress cracking, and regional material distribution tests were carried out on the bottles. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and ultraviolet transmittance analyses were conducted to explain the changes in mechanical, chemical, physical properties, and light transmission of bottles. It was found out that the COOH amount increased and the AA content decreased with increasing nHAp amount. On the other hand, no change was observed in the amounts of DEG and IPA. Although the mechanical properties such as load-carrying capacity and burst strength of the bottles have improved, it has been determined that the standard environmental stress crack resistance test procedure cannot be applied to such a composite. Experimental findings indicate that nHAp disrupts the chemical structure of PET and it isolates harmful chemicals such as AA by forming intermolecular bonds. Moreover, with the addition of up to 0.8% nHAp, PET bottles block the light transmission approximately 80% within 400–700 nm wave length zone. The study demonstrates that the PET/nHAp composite bottles can be used in the food industry, particularly in the packaging of milk and milk products which are vulnerable to light exposure.  相似文献   
67.
The effects of gum tragacanth obtained from two species of Astragalus Gossypinus (GT-G) and A. Parrowianus (GT-P) at two levels of 10% and 30% combined with cellulose nanofibers (CNF; 5%) on the physico-mechanical and structural properties of polyvinyl alcohol (PVA) nanocomposite film were investigated in this study. The water solubility and water vapor permeability of the films decreased with increasing the content of both gums, especially in the film containing 30% GT-P. The highest values of the tensile strength (39.3 MPa) and elongation at break (445%) belonged to the treatment containing 10% GT-P (90/10P/0). The FTIR and DSC analyses confirmed good interactions between GT and PVA in the 90/10P/0 treatment. SEM images indicated the dense structure of this film as the optimum treatment. Although the presence of CNF in the films containing GT-G improved some properties, especially the Young modulus, it impaired all the functional properties of nanocomposite GT-P film.  相似文献   
68.
This study evaluated the effectiveness and efficiency of two food-grade multifunctional epoxies chain extenders (CE) in branching PLA and improving its foamability. Both CE grades were effective in branching PLA causing increased end mixing torque, shear, elongational viscosities, molecular weight but decreased crystallinity of poly(lactic acid) (PLA) with CE content, due to chain entanglements. CE with low epoxy equivalent weight (EEW) was more efficient than the counterpart with high EEW due to its high reactivity. Neat PLA foams showed poor cell morphology with areas without nucleated cells and had a low expansion, owing to its low elongational viscosity. By contrast, there was a considerable change in the morphology of the PLA foam structure caused by its branching. Chain-extended PLA foams had uniform cell morphology with a high void fraction (up to ~85%) and expansion ratio (an eightfold expansion over unfoamed PLA) due to their high elongational viscosities, suggesting that melt properties of branched PLA were appropriate for optimum cell growth and stabilization during foaming. Overall, CE with low EEW was the most effective grade and 0.25% the optimum content that provided appropriate melt viscosity to produce PLA foams with a homogeneous structure, fine cells, high void fraction, high volume expansion ratio, and cell-population density.  相似文献   
69.
Infiltration kinetics of pressureless infiltration in SiCp/Al composites   总被引:1,自引:0,他引:1  
The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pressureless infiltration of silicon carbide particle compacts were studied and quantified. The preform with high volume fraction SiC was obtained by mixing SiC particles with bimodal size distribution, whose diameters are 5 and 50 btm, respectively. The results show that an incubation period exists before infiltration, the influence of temperature on the incubation time exceeds that of Mg content, infiltration rate increases with the increasing temperature and Mg content, infiltration rate decreases as Mg consumes. A model of macroscopical infiltration and microscopical infiltration of liquid alloy in porous SiC preform was proposed.  相似文献   
70.
研究了无压渗透法制备电子封装SiCp/Al复合材料过程中,烧结工艺对SiC预制件开孔率、抗压强度的影响,以及渗透工艺对Al液渗透形成复合材料的影响,并对所制备的复合材料热物理性能和表面涂覆进行了评价。结果表明,经1100℃分段烧结的SiC预制件开孔率、抗压强度较好;Al液浇铸温度、保温温度分别在750~850℃、800~900℃的范围时,SiC预制件的渗透效果较好;所制备的55%SiCp/Al复合材料相对密度为98.3%,热膨胀系数在(7.23~9.97)×10-6K^-1之间变化,热导率为146.5~172.3W/(m.K),复合材料表面涂覆性能可行性好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号