首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21224篇
  免费   1814篇
  国内免费   783篇
电工技术   368篇
技术理论   1篇
综合类   957篇
化学工业   10294篇
金属工艺   369篇
机械仪表   338篇
建筑科学   928篇
矿业工程   134篇
能源动力   573篇
轻工业   633篇
水利工程   69篇
石油天然气   2175篇
武器工业   244篇
无线电   1774篇
一般工业技术   4403篇
冶金工业   256篇
原子能技术   72篇
自动化技术   233篇
  2024年   92篇
  2023年   462篇
  2022年   318篇
  2021年   584篇
  2020年   618篇
  2019年   615篇
  2018年   532篇
  2017年   699篇
  2016年   700篇
  2015年   690篇
  2014年   1057篇
  2013年   1172篇
  2012年   1291篇
  2011年   1465篇
  2010年   1090篇
  2009年   1146篇
  2008年   1029篇
  2007年   1320篇
  2006年   1355篇
  2005年   1083篇
  2004年   963篇
  2003年   883篇
  2002年   815篇
  2001年   717篇
  2000年   586篇
  1999年   494篇
  1998年   456篇
  1997年   313篇
  1996年   224篇
  1995年   170篇
  1994年   181篇
  1993年   155篇
  1992年   122篇
  1991年   91篇
  1990年   44篇
  1989年   38篇
  1988年   38篇
  1987年   22篇
  1986年   22篇
  1985年   53篇
  1984年   43篇
  1983年   32篇
  1982年   29篇
  1981年   3篇
  1980年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
13.
A solid-state photoelectrochemical (SSPEC) cell is an attractive approach for solar water splitting, especially when it comes to monolithic device design. In a SSPEC cell the electrodes distance is minimized, while the use of polymer-based membranes alleviates the need for liquid electrolytes, and at the same time they can separate the anode from the cathode. In this work, we have made and tested, firstly, a SSPEC cell with a Pt/C electrocatalyst as the cathode electrode, under purely gaseous conditions. The anode was supplied with air of 80% relative humidity (RH) and the cathode with argon. Secondly, we replaced the Pt/C cathode with a photocathode consisting of 2D photocatalytic g-C3N4, which was placed in tandem with the photoanode (tandem-SSPEC). The tandem configuration showed a three-fold enhancement in the obtained photovoltage and a steady-state photocurrent density. The mechanism of operation is discussed in view of recent advances in surface proton conduction in absorbed water layers. The presented SSPEC cell is based on earth-abundant materials and provides a way towards systems of artificial photosynthesis, especially for areas where water sources are scarce and electrical grid infrastructure is limited or nonexistent. The only requirements to make hydrogen are humidity and sunlight.  相似文献   
14.
《Ceramics International》2020,46(15):23695-23705
Solid electrolytes are the key component in designing all-solid-state batteries. The Li1.3Al0.3Ti1.7(PO4)3 (LATP) structure and its derivatives obtained by doping various elements at Ti and Al site acts as good solid electrolytes. However, there is still scope for enhancing the ionic conductivity using simple precursors and preparation methods. In this study, the Li superionic conductors Li1.3Al0.3Ti1.7-xZrx(PO4)3 (LATZP) with 0 ≤ x ≤ 0.2 have been successfully prepared by the solid-state reaction route. The structural, morphological, and ionic transport properties were analyzed using several experimental techniques including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and impedance spectroscopy (IS). The presence of two relaxation processes corresponding to grain and grain boundary was studied using various formalisms. We have observed that grain effects dominate at lower temperatures (<100 °C) while the grain boundary at higher temperatures (> 200 °C) on ionic conductivity. The relaxation mechanisms of grain and grain boundaries were investigated by the Summerfield scaling of AC conductivity. The highest total ionic conductivity of 2.48 × 10-4 S/cm at 150 °C and 5.50 × 10-3 S/cm at 250 °C was obtained for x = 0.1 in Li1.3Al0.3Ti1.6Zr0.1(PO4)3 sintered at 950 °C/6 h in the air. The ionic conductivity value was found to be higher than the ionic conductivity reported for LATP prepared via solid-state reaction mechanism using the same precursors and conditions.  相似文献   
15.
Progesterone is a natural hormone steroid used in humans for several treatments and in livestock for artificial insemination, which exhibits two polymorphic forms at ambient conditions: form 1 and form 2. Form 2 is metastable and more soluble than form 1; however, it is not suitable to use as powder raw material because it transforms into form 1 by the effects of grinding. A polymorphic screening of progesterone based on polymer-induced heteronucleation method was performed as an alternative to prepare the metastable form. Polyvinyl alcohol, hydroxypropyl methylcellulose (HPMC), dextran, gelatin, polyisoprene (PI) and acrylonitrile-butadiene (NBR) copolymer were used. Crystals were prepared from 0.5, 10 and 40?mg/mL solutions in acetone at room temperature by solvent evaporation. The samples were characterized by X-ray powder diffraction, differential scanning calorimetry (DSC), scanning electron microcopy and attenuated total reflectance infrared Fourier transform spectroscopy. Form 1 was nucleated from 40?mg/mL solutions on the six polymers and from 10?mg/mL solutions on PI and NBR. The mixture of form 1 and form 2 was obtained from 10?mg/mL solution on HPMC, dextran and gelatin and from 0.5?mg/mL solution crystallizations. Therefore, the polymeric devices, which crystallized the metastable and more soluble polymorph (2) of progesterone, would be a promissory alternative for the pharmaceutical applications.  相似文献   
16.
Superabsorbent polymers (SAP) can be used as a means for internal curing of concrete. In the present study, the development of transport properties of concrete with SAP is investigated. The chloride migration coefficient according to NT BUILD 492 is used as a measure of this. Twenty concrete mixtures are tested 7, 14, and 28 days after casting. The development of degree of hydration is followed for 20 corresponding paste mixtures.Both when SAP is added with extra water to compensate the SAP water absorption in fresh concrete and without extra water, the internal curing water held by SAP may contribute to increase the degree of hydration. No matter if SAP is added with or without extra water, it appears that the so-called gel space ratio can be used as a key parameter to link age and mixture proportions (water-to-cement ratio and SAP dosage) to the resulting chloride migration coefficient; the higher the volume of gel solid relative to the space available for it, the lower the chloride migration coefficient, because the pore system becomes more tortuous and the porosity becomes less.  相似文献   
17.
The polymer electrolyte based solid-state lithium metal batteries are the promising candidate for the high-energy electrochemical energy storage with high safety and stability. Moreover, the intrinsic properties of polymer electrolytes and interface contact between electrolyte and electrodes have played critical roles for determining the comprehensive performances of solid-state lithium metal batteries. In this review, the development of polymer electrolytes with the design strategies by functional units adjustments are firstly discussed. Then the interfaces between polymer electrolyte and cathode/anode, including the interface issues, remedy strategies for stabilizing the interface contact and reducing resistances, and the in-situ polymerization method for enhancing the compatibilities and assembling the batteries with favorable performances, have been introduced. Lastly, the perspectives on developing polymer electrolytes by functional units adjustment, and improving interface contact and stability by effective strategies for solid-state lithium metal batteries have been provided.  相似文献   
18.
Soft robots built with active soft materials have been increasingly attractive. Despite tremendous efforts in soft sensors and actuators, it remains extremely challenging to construct intelligent soft materials that simultaneously actuate and sense their own motions, resembling living organisms’ neuromuscular behaviors. This work presents a soft robotic strategy that couples actuation and strain-sensing into a single homogeneous material, composed of an interpenetrating double-network of a nanostructured thermo-responsive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) and a light-absorbing, electrically conductive polymer polypyrrole (PPy). This design grants the material both photo/thermal-responsiveness and piezoresistive-responsiveness, enabling remotely-triggered actuation and local strain-sensing. This self-sensing actuating soft material demonstrated ultra-high stretchability (210%) and large volume shrinkage (70%) rapidly upon irradiation or heating (13%/°C, 6-time faster than conventional PNIPAAm). The significant deswelling of the hydrogel network induces densification of percolation in the PPy network, leading to a drastic conductivity change upon locomotion with a gauge factor of 1.0. The material demonstrated a variety of precise and remotely-driven photo-responsive locomotion such as signal-tracking, bending, weightlifting, object grasping and transporting, while simultaneously monitoring these motions itself via real-time resistance change. The multifunctional sensory actuatable materials may lead to the next-generation soft robots of higher levels of autonomy and complexity with self-diagnostic feedback control.  相似文献   
19.
20.
Fluorescent nanodiamonds (fNDs) containing nitrogen vacancy (NV) centers are promising candidates for quantum sensing in biological environments. This work describes the fabrication and implementation of electrospun poly lactic‐co‐glycolic acid (PLGA) nanofibers embedded with fNDs for optical quantum sensing in an environment, which recapitulates the nanoscale architecture and topography of the cell niche. A protocol that produces uniformly dispersed fNDs within electrospun nanofibers is demonstrated and the resulting fibers are characterized using fluorescent microscopy and scanning electron microscopy (SEM). Optically detected magnetic resonance (ODMR) and longitudinal spin relaxometry results for fNDs and embedded fNDs are compared. A new approach for fast detection of time varying magnetic fields external to the fND embedded nanofibers is demonstrated. ODMR spectra are successfully acquired from a culture of live differentiated neural stem cells functioning as a connected neural network grown on fND embedded nanofibers. This work advances the current state of the art in quantum sensing by providing a versatile sensing platform that can be tailored to produce physiological‐like cell niches to replicate biologically relevant growth environments and fast measurement protocols for the detection of co‐ordinated endogenous signals from clinically relevant populations of electrically active neuronal circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号