首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241416篇
  免费   31081篇
  国内免费   26958篇
电工技术   20575篇
技术理论   10篇
综合类   17859篇
化学工业   56783篇
金属工艺   10856篇
机械仪表   14098篇
建筑科学   10073篇
矿业工程   2677篇
能源动力   6681篇
轻工业   15831篇
水利工程   2663篇
石油天然气   6559篇
武器工业   2411篇
无线电   34904篇
一般工业技术   32373篇
冶金工业   5062篇
原子能技术   3480篇
自动化技术   56560篇
  2024年   1301篇
  2023年   4372篇
  2022年   7499篇
  2021年   9011篇
  2020年   8589篇
  2019年   8010篇
  2018年   7548篇
  2017年   9960篇
  2016年   10798篇
  2015年   12054篇
  2014年   12367篇
  2013年   15947篇
  2012年   17549篇
  2011年   19642篇
  2010年   14370篇
  2009年   14381篇
  2008年   15330篇
  2007年   17364篇
  2006年   16447篇
  2005年   14054篇
  2004年   11949篇
  2003年   9613篇
  2002年   7554篇
  2001年   5924篇
  2000年   4971篇
  1999年   4145篇
  1998年   3491篇
  1997年   2763篇
  1996年   2216篇
  1995年   1888篇
  1994年   1678篇
  1993年   1282篇
  1992年   1042篇
  1991年   849篇
  1990年   730篇
  1989年   534篇
  1988年   375篇
  1987年   238篇
  1986年   214篇
  1985年   288篇
  1984年   251篇
  1983年   191篇
  1982年   233篇
  1981年   107篇
  1980年   105篇
  1979年   29篇
  1978年   22篇
  1977年   30篇
  1976年   20篇
  1951年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
12.
Although greedy algorithms possess high efficiency, they often receive suboptimal solutions of the ensemble pruning problem, since their exploration areas are limited in large extent. And another marked defect of almost all the currently existing ensemble pruning algorithms, including greedy ones, consists in: they simply abandon all of the classifiers which fail in the competition of ensemble selection, causing a considerable waste of useful resources and information. Inspired by these observations, an interesting greedy Reverse Reduce-Error (RRE) pruning algorithm incorporated with the operation of subtraction is proposed in this work. The RRE algorithm makes the best of the defeated candidate networks in a way that, the Worst Single Model (WSM) is chosen, and then, its votes are subtracted from the votes made by those selected components within the pruned ensemble. The reason is because, for most cases, the WSM might make mistakes in its estimation for the test samples. And, different from the classical RE, the near-optimal solution is produced based on the pruned error of all the available sequential subensembles. Besides, the backfitting step of RE algorithm is replaced with the selection step of a WSM in RRE. Moreover, the problem of ties might be solved more naturally with RRE. Finally, soft voting approach is employed in the testing to RRE algorithm. The performances of RE and RRE algorithms, and two baseline methods, i.e., the method which selects the Best Single Model (BSM) in the initial ensemble, and the method which retains all member networks of the initial ensemble (ALL), are evaluated on seven benchmark classification tasks under different initial ensemble setups. The results of the empirical investigation show the superiority of RRE over the other three ensemble pruning algorithms.  相似文献   
13.
In this paper, a modified particle swarm optimization (PSO) algorithm is developed for solving multimodal function optimization problems. The difference between the proposed method and the general PSO is to split up the original single population into several subpopulations according to the order of particles. The best particle within each subpopulation is recorded and then applied into the velocity updating formula to replace the original global best particle in the whole population. To update all particles in each subpopulation, the modified velocity formula is utilized. Based on the idea of multiple subpopulations, for the multimodal function optimization the several optima including the global and local solutions may probably be found by these best particles separately. To show the efficiency of the proposed method, two kinds of function optimizations are provided, including a single modal function optimization and a complex multimodal function optimization. Simulation results will demonstrate the convergence behavior of particles by the number of iterations, and the global and local system solutions are solved by these best particles of subpopulations.  相似文献   
14.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
15.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
16.
Bacillus cereus can cause emetic and diarrheal food poisoning. It is widespread in nature and therefore, considered a major foodborne pathogen. To develop a sensitive and reliable assay for detecting enterotoxin genes (nheA, entFM, hblD, cytK) and emetic toxin (ces), specific primers each targeting one individual gene were designed. Propidium monoazide (PMA) was coupled with the developed multiplex PCR (mPCR) for the detection of viable B. cereus. The inclusivity and exclusivity of the PMA-mPCR was confirmed using a panel of 44 strains including 17 emetic and 9 enterotoxic B. cereus reference strains and 18 non-target strains. The limit of detection (LOD) without PMA treatment in pure DNA was 2 pg/reaction tube. The LOD of mPCR assay in pure heat-killed dead bacteria was 4.0 × 102 CFU/mL. Also, the LOD on the viable bacteria with or without PMA treatment was similar (3.8 × 102 CFU/mL) showing that the PMA treatment did not significantly decrease sensitivity. Finally, the newly developed PMA-mPCR successfully detected 4.8 × 103 and 3.6 × 103 CFU/g of viable B. cereus F4810/72 (emetic) and B. cereus ATCC 12480 (enterotoxic) reference strains, respectively, in food samples. Hence, this study combines PMA and mPCR to detect viable B. cereus with a wide range of toxin detection (5 toxins). Thus, the novel PMA-mPCR assay developed in this study is a rapid and efficient diagnostic tool for the monitoring of viable B. cereus in food samples and potentially other samples via appropriate DNA extraction.  相似文献   
17.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
18.
Chaos optimization algorithm (COA) utilizes the chaotic maps to generate the pseudo-random sequences mapped as the decision variables for global optimization applications. A kind of parallel chaos optimization algorithm (PCOA) has been proposed in our former studies to improve COA. The salient feature of PCOA lies in its pseudo-parallel mechanism. However, all individuals in the PCOA search independently without utilizing the fitness and diversity information of the population. In view of the limitation of PCOA, a novel PCOA with migration and merging operation (denoted as MMO-PCOA) is proposed in this paper. Specifically, parallel individuals are randomly selected to be conducted migration and merging operation with the so far parallel solutions. Both migration and merging operation exchange information within population and produce new candidate individuals, which are different from those generated by stochastic chaotic sequences. Consequently, a good balance between exploration and exploitation can be achieved in the MMO-PCOA. The impacts of different one-dimensional maps and parallel numbers on the MMO-PCOA are also discussed. Benchmark functions and parameter identification problems are used to test the performance of the MMO-PCOA. Simulation results, compared with other optimization algorithms, show the superiority of the proposed MMO-PCOA algorithm.  相似文献   
19.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
20.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号